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OUTLINE

• The model: spin S = 1/2 Heisenberg chain with spatially modulated DMI

H = J
X

n

Sn · Sn+1 +
X

n

D(n) · [Sn × Sn+1] ,

Motivation: recent progress in tailoring DMI
• The spin S = 1/2 chain with uniform and staggered DMI

H =
X

n

n
JSn · Sn+1 + D · [Sn × Sn+1]

o
,

H =
X

n

n
JSn · Sn+1 + (−1)

nD · [Sn × Sn+1]
o

,
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• Gauge transformation



– The Anisotropic Heisenberg chain with modulated DM interaction
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• The Exactly Solvable limit

• The Effective Continuum Limit Theory

• Numerical (DMRG) Analysys

• Summary



• Ground state phase diagram
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Here the effective anisotropy parameter

γ
∗
= J∆/

q
J2 + D2

0 + D2
1.

The phase diagram contains the following four phases:

(i) the ferromagnetic phase at γ∗ ≤ −1;

(ii) the gapless Luttinger-liquid (LL) phase at −1 < γ∗ < γ∗c1 = −1/
√

2;
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At γ∗ = γ∗c1 the Berezinskii-Kosterlitz-Thouless (BKT) phase transition takes the system into the

composite (C1) gapped phase characterized by the coexistence of long-range ordered (LRO) alternating

spin dimerization pattern

ε(n) = 〈Sn · Sn+1〉 ∼ const + (−1)
n
ε

coexisting with long-range alternating pattern of the spin chirality vector

κ
z
n = 〈[ Sn × Sn+1 ]z〉 ∼ const + (−1)

n
κ .

Finally, at γ∗ = γ∗c2 > 1 there is an Ising type phase transition into the other composite (C2) gapped

phase, characterized by the coexistence of long-range dimerization, chirality and antiferromagnetic

〈Sz
n〉 ∼ const + (−1)

n
m

modulations.



Additonal motivations from the recent experimental achievements:

Recently it has been demonstrated that DM interaction can be efficiently tailored with an substantial

efficiency factor by structural modulations

O.M. Volkov et al., Scientific Reports 8, Article number: 866 (2018).

or by external electric field

H. Yang et al., Scientific Reports, 8, Article N: 12356 (2018); W. Zhang, et al., App. Phys. Lett.

113, 122406 (2018); T. Srivastava et al., Nano Lett. 18, 4871 (2018).

External electric field induced modulation of the DM interaction can be realized in spin-driven chiral
multiferroic (MF) systems.

R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007); M. Bibes and A. Barthelemy, Nat. Mater.

7, 425 (2008); S.-W. Cheong and M. Mostovoy, Nature Materials 6, 13 (2007).

H ∼ J
X

n

P · [Sn × Sn+1] ,

Context of materials useful for electric field controlled quantum information processing



A single spin-1/2 XXX chain with DM interaction. [M.Bocquet et al., Phys. Rev. B 64, 094425 (2001).]
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Theorem: The model (1) with periodic boundary conditions is equivalent to an XXZ chain with

twisted boundary conditions.

Indeed, performing a local rotation around the z-axis

S
+
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p

J2 + D2 and ∆eff =
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Jeff

< 1 .



Using the above mapping we can now express bulk correlation functions of the spin-1/2 chain with DM

interaction in terms of correlation functions of an XXZ chain with exchange Jeff and anisotropy ∆eff .

For example,

〈S+
n S

−
n+l〉DM = e

−i l θ 〈τ+
n τ

−
n+l〉XXZ, 〈S−mS

+
n+l〉DM = e

+i l θ 〈τ−n τ
+
n+l〉XXZ .

This allows us to express the dynamical magnetic susceptibility of the model with uniform DMI in terms

of the results for the Heisenberg XXZ chain

χ
+−
DM(ω, k) = χ

+−
(ω, k + θ), χ

−+
DM (ω, k) = χ

−+
(ω, k − θ), χ

zz
DM(ω, k) = χ

zz
(ω, k).
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Figure 1: Schematic two-spinon dispersion in the vicinity of k = π in the sector ∆Sz = ±1 for the

isotropic Heisenberg chain with DM interaction. From arXiv:cond-mat/0102138



The XX chain with alternating DM interaction.

H =
X

n

hJ
2

“
S

+
n S

−
n+1 + S

−
n S

+
n+1

”
+ Jz S

z
nS

z
n+1

+
i

2
(D0 + (−1)

n
D1)

“
S

+
n S

−
n+1 − S

−
n S

+
n+1

” i
,

where S+
n = S+

x ± iS+
y .

Using the Jordan-Wigner transformations [P. Jordan and E. Wigner Z. Phys. 47 631 (1928).]
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S
z
n = a

†
nan − 1/2,

where a†n (an) is a spinless fermion creation (annihilation) operator on site n.



We rewrite the initial spin Hamiltonian in terms of interacting spinless fermions in the following

way:

H =
J

2

X
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The exactly solvable limit Jz = 0.



The Fourier transform

an =
1√
L

X

k

ake
ikn

,

and at Jz = 0 we obtain

H =
X

k

h
ε(k) a

†
kak + i∆(k)a

†
kak+π

i
,

where

ε(k) = (J cos k −D0 sin k) = Jeff cos(k + q0) ,

∆(k) = D1 cos k

and

Jeff =
q

J2 + D2
0

q0 = arctan(D0/J) .



Thus, in absence of the staggered component of the DM interaction and (D1 = 0) the excitation

spectrum of the model is given by the same dispersion relation as the standard XX chain

H0 =
X

k

ε(k) a
†
kak ,

but for a uniform shift q0 in the momentum vector due to the uniform part of the DM interaction

system is characterized by two Fermi points k±F = ±π
2 − q0, so that in the ground state all states with

π/2 ≤ |k + q0| ≤ π are occupied and those with |k + q0| < π/2 are empty. The bandwidth is half

filled, the total magnetization of the system in the ground state as well as the average value of the on-site

spin vanishes

m =
1

L

X
n

〈0|Sz
n|0〉 = 0 .

The vacuum spin current, determined via the chirality order parameter

Jsp =
1

L

X
n

〈0|jz
n|0〉 =

2

π
sin q0 .

Note that due to the gapless excitation spectrum, all corresponding correlations decay in power-laws and

no LRO is present in absence of modulated part of the DM interaction.



At D1 6= 0, diagonalization of the Hamiltonian (2) is also straightforward. It is convenient to

restrict momenta within the reduced Brillouin zone −π/2 < k ≤ π/2 and to introduce a new notation

ak+π = bk. In these terms the Hamiltonian reads

H =
P

k
′
h
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“
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”
+ i∆(k)

“
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”i
,

Here prime in the sum means that the summation is taken over the reduced Brilluoin zone −π/2 < k ≤
π/2. Using the unitary transformation

ak = cos φk αk + i sin φk βk bk = i sin φk αk + cos φk βk

and choosing

tan (2φk) = −∆(k)/ε(k)
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Note that in absence of the uniform component of the DM interaction (D0 = 0, D1 6= 0),

E(k) = ±
q

J2 + D2
1 cos k and therefore the excitation spectrum is gapless, the vacuum spin current

Jsp = 0 and no LRO is present in the ground state.

Only at D 6= 0, D1 6= 0 the spectrum is characterized by a finite excitation gap
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In the ground state nβ(k) = 〈β†kβk〉 = 1 and nα(k) = 〈α†kαk〉 = 0. As the result, in the ground

state the z-projection of the total spin as well as the staggered part of the on-site magnetization

M =
X

n

〈0|Sz
n|0〉 =

L

2π

π/2Z

−π/2

[ nβ(k)− 1/2 ] = 0
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However the staggered transverse spin dimerization and spin current (chirality) order parameters are

finite

ε⊥ =
1

L

X
n

(−1)
n〈0|

“
S

+
n S

−
n+1 + S

−
n S

+
n+1

”
|0〉 = −D1

π

π/2Z

−π/2

sin k cos k

E(k)
dk

κ =
i

L

X
n

(−1)
n〈0|

“
S

+
n S

−
n+1 − S

−
n S

+
n+1

”
|0〉 =

D1

π

π/2Z

−π/2

cos2 k

E(k)
dk .



It is easy to check by inspection, that both link-located order parameters ε⊥ → 0 and κ → 0 at

D0 = 0 and D1 6= 0.

0 10 20 30 40 50 60
bond

−0.18

−0.17

−0.16

−0.15

−0.14

−0.13

−0.12

−0.11

−0.10

ε
⟂

0 10 20 30 40 50 60
bond

−0.20

−0.18

−0.16

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

ε
∥

Figure 2: The ground state expectation value distribution along bonds of the transverse and longitudinal

part of the nearest-neighbor spin-spin exchange operator ε⊥n and ε‖n as a function of site number. The

results correspond to a chain of L = 64 sites with OBC, with parameters J = 1, D0 = tan(π/6) and

D1 = 0.2.
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Figure 3: The ground state expectation value distribution along bonds of the of the spin current (chirality)

operator jz
n and of the z component of the spin operator as a function of site number. The results

correspond to a chain of L = 64 sites with OBC, with parameters J = 1, D0 = tan(π/6) and

D1 = 0.2.



Gauging away the DM interaction

Let us first rewrite the Hamiltonian in a way which explicitly takes into account doubling of the unit

cell by the staggered DMI.

H =
J
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where new dimensionless parameters d± = (D0 ±D1)/J

We introduce new spin variables τ2m and τ2m+1 by performing a site-dependent rotation of spins along

the chain around the z axis with relative angle ϑ− for spins at consecutive odd-even sites (2m− 1, 2m)

and ϑ+ for spins at consecutive even-odd sites (2m, 2m + 1), so that

S
+
2m−1 = e

i(m−1)(ϑ−+ϑ+)
τ

+
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Choosing angles ϑ± such that

tan ϑ± = d±,

one can gauge away the DM contribution and get

H = J̃
X
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τ
+
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where, at di ¿ 1 ( i = ±),
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γ
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4
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”
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At J− 6= J+ the Hamiltonian (2) is recognized as a Hamiltonian of the XXZ chain with alternating

transverse exchange. Note that the alternation of the transverse exchange δ 6= 0 only for finite D1 6= 0

and D0 6= 0. In the following we will discard O `d4
i

´
corrections.



In the case of uniform DM interaction (D1 = 0) the gauge transformation reduces to the consecutive

rotation of spins along the chain around the z axis with respect to the nearest neighbor on the same angle

θ = arctan (D0/J) .

Because in this limit J+ = J− i.e. δ = 0, the effect of the uniform DM interaction reduces to the

renormalization of the exchange anisotropy γ → γ∗ and change of the boundary conditions. Respectively

the Heisenberg chain with uniform DM interaction is equivalent to an XXZ chain with twisted boundary

conditions. In particular, the excitation spectrum and the bulk correlation functions of a spin-1/2 XXZ

Heisenberg chain with DM interaction can be obtained from that of the corresponding XXZ chain

H = J
∗

NX
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2

“
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+
n τ
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−
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”
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z
nτ

z
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i
, (3)

taking into account the shift in momentum induced by the mapping and renormalization of the anisotropy

parameter



In the case of staggered DM interaction D(n) = (−1)nD1

ϑ+ = −ϑ− = ϑ = arctan (D1/J)

and the gauge transformation becomes global and corresponds to the rotation of all spins on even sites

around the z axis on the same angle θ

S
+
2m = e

iθ
τ

+
2m, S

z
2m = τ

z
2m+1,

while the spins on even sites remain untouched:

S
+
2m−1 = τ

+
2m−1, S

z
2m = τ

z
2m.

This gives again the Hamiltonian (3), but with transverse exchange

J
∗
=
q

J2 + D2
1 .

Conclusion:e this Section, gauging away of the DMI maps the initial XXZ spin-chain model
with alternating DMI onto the effective spin τ = 1/2 XXZ chain with alternating transverse
exchange.



The continuum-limit bosonization approach

[*1] A. O. Gogolin, A. A. Nersesyan and A. M. Tsvelik, Bosonization and strongly correlated systems,

Cambridge University Press (1998).

[*2]T. Giamarchi, ”Quantum Physics in One Dimension” (Oxford University Press, Oxford, 2004).

To obtain the continuum version of the spin we use the standard bosonization expression of the spin

operators [*1]

τ
z
n '

r
K

π
∂xφ(x) + (−1)

n a
πα

sin
√

4πKφ(x) , (4)

τ
±
n ' b

πα
cos(

√
4πKφ) e

±i
√

π/Kθ

− (−1)
n c
πα

e
±i
√

π/Kθ
. (5)

Here φ(x) and θ(x) are dual bosonic fields, ∂tφ = u∂xθ, and satisfy the following commutational

relation

[φ(x), θ(y)] = iΘ(y − x) ,

[φ(x), θ(x)] = i/2 . (6)



Here the non-universal real constants a, b and c depend smoothly on the parameter γ∗, are of the

order of unity at γ∗ = 0 expected to be nonzero everywhere at |γ∗| < 1. The Luttinger liquid parameter

is known within the critical line −1 < γ∗ < 1 to be

K =
π

2 arccos (−γ∗)
.

Thus the parameter K decreases monotonically from its maximal value K → ∞ at γ∗ → −1

(ferromagnetic instability point), is equal to unity at γ∗ = 0 (Jz = 0) and reaches the value K = 1/2

at γ∗ = 1 (isotropic antiferromagnetic chain). In the case of dominating Ising type anisotropy, at γ∗ > 1,

K < 1/2.

Using (4)-(5) we finally obtain for the initial lattice Hamiltonian (3):

H = u

Z
dx
h1
2
(∂xφ)

2
+

1

2
(∂xθ)

2
+

m0

πα2
cos

√
4πKφ +

M0

πα2
cos

√
16πKφ

i
, (7)

where

m0 ' δ = D0D1/J
∗ 2

,

M0 ' γ
∗
/2π

and u ' J∗/K stands for the velocity of spin excitation.



Thus the effective continuum-limit version of the initial lattice spin model is given by the double-
frequency sine-Gordon (DSG) model.

H = u

Z
dx
h1
2
(∂xφ)

2
+

1

2
(∂xθ)

2
+

m0

πα2
cos

√
4πKφ +

M0

πα2
cos

√
16πKφ

i
, (8)

[*3] R.K. Boullough, P.J. Caudrey, and H.M Gibbs in Solitons Springer-Verlag 1980,pg 107-141.

[*4] G. Delfino and G. Mussardo, Nucl. Phys. B 516, 675 (1998).

The ground state properties of the DSG model are controlled by the scaling dimensions of the two

cosine terms

d = dim[cos
√

4πKφ] = K d
∗
= dim[cos

√
16πKφ] = 4K

present in the Hamiltonian. Each of these cosine terms becomes relevant in the parameter range where

the corresponding scaling dimensionality d ≤ 2 or d∗ ≤ 2. Using (7) we find that d ≤ 2, i.e. the first

cosine term in (8) is relevant, at γ∗ > γ∗c1 = −√2/2, while d∗ ≤ 2, i.e. the second cosine term in (8),

for γ∗ > 1. This gives following four segments of the model parameter range (see Fig.1), where each one

corresponds to the different mechanisms of formation of the ground-state properties of the system:



The Ferromagnetic sector γ∗ ≤ −1

At γ∗ ≤ −1 the system is in the ferromagnetic phase, all spins are oriented along the z-axis

〈τ z
n〉 = 〈Sz

n〉 = 1/2; 〈τx
n〉 = 〈τy

n〉 = 0

and therefore the effect of the DM interaction is completely suppressed.

The Luttinger-liquid sector −1 < γ∗ < γ∗c1

At −1 < γ∗ < γ∗c1, d∗ > d > 2 and therefore both cosine terms in (8) are irrelevant and can

be neglected. The gapless long-wavelength excitations of the anisotropic spin chain are described by the

standard Gaussian theory with the Hamiltonian

H0 = u

Z
dx
h 1

2
(∂xφ)

2
+

1

2
(∂xθ)

2
i
. (9)

In this critical Luttinger-liquid phase, all correlations show a power-law decay, with indices smoothly

depending on the parameter K



The dimerized sector γ∗c1 < γ∗ ≤ 1

At γ∗c1 < γ∗ ≤ 1, d < 2 while d∗ > 2, therefore the double-frequency cosine term is irrelevant and

can be neglected. In this case infrared properties of the system are described by the sine-Gordon model

H = u
R

dx
h

1
2(∂xφ)2 + 1

2(∂xθ)2 +
m0
πα2 cos

√
4πKφ

i
. (10)

With increasing γ∗, the scaling dimensionality of the relevant cosine term changes from the marginal value

d = 2 at γ∗ = γ∗c1, to d = 1/2 at γ∗ = 1. Thus, at γ∗ = γ∗c1 ' −0.7 the BKT ground state of the

system, the excitation gap opens at γ∗ = γ∗c1 and remains finite in the whole region −0.7 < γ∗ ≤ 1.

Exact solution of the quantum sine-Gordon model

V. E. Korepin and L. D. Faddeev, Theor. Math. Phys. 25, 1039 (1975).

Al. B. Zamolodchikov, Int. J. Mod. Phys. A 10, 1125 (1995).

it is known that for arbitrary finite m0 the gapped excitation spectrum of the Hamiltonian Eq. (10) at

2 > d > 1 (−0.7 < γ∗ ≤ 0), consists of solitons and antisolitons with masses

Msol ∼
`
m0/J

∗´ 1
2−d =

`
m0/J

∗´ 1
2−K ,

while at 1 > d ≥ 1/2 (0 < γ∗ ≤ 1) in addition, also of soliton-antisoliton bound states (”breathers”)

with the lowest breather mass

Mbr = 2Msol sin

„
πK

4− 2K

«
.



The excitation gap is exponentially small at the BKT phase transition point

∆exc ∼ J
∗
exp

`−1/(γ
∗ − γ

∗
c1)
´

,

it smoothly increases with increasing γ∗, and at γ∗ = 0

∆exc = 2J
∗Msol = 2m0 = 2D0D1/J

∗
.

Finally, at γ∗ = 1 the gap is

∆exc = J
∗Mbr = J

∗
“

D0D1/J
∗ 2
”2/3

.

The gap in the excitation spectrum leads to suppression of fluctuations in the system and the φ field

is condensed in one of its vacua ensuring the minimum of the dominating potential energy

√
4πK〈φ〉 =


π at m0 > 0

0 at m0 < 0
. (11)



Trapping of the φ field in one of the vacua from the given set leads to suppression of the site-located

magnetic degrees of freedom

〈τ z
n〉 = 〈τx

n〉 = 〈τy
n〉 = 0.

Respectively we obtain, that the site-located magnetic order is also fully suppressed in the initial spin chain

system:

〈Sz
n〉 = 〈Sx

n〉 = 〈Sy
n〉 = 0.

Moreover, if we consider the link-located degrees of freedom, using (4)-(5) one obtains that the

continuum limit bosonized version of the τ -spin chirality operator is given by

κ
(τ)
n = −i

“
τ

+
n τ

−
n+1 − h.c.

”
→ 2√

π
∂xθ + (−1)

n 2b
πα

sin(
√

4πKφ)

and therefore in the gapped phase, where
√

4πK〈φ〉 = 0 mod π κ(τ)
n 〉 = 0.

However, the bosonized expressions for the staggered parts of the τ -spin longitudinal and transverse

nearest-neighbor spin exchange operators

ε
(τ)
⊥ (n) =

(−1)n

2

“
τ

+
n τ

−
n+1 + h.c.

”
∼ a

2π2α2
cos(

√
4πKφ) (12)

ε
(τ)
z (n) = (−1)

n
τ

z
nτ

z
n+1 ∼

b
πα

cos(
√

4πKφ) (13)



are characterized a finite vacuum expectation value in the gapped phase and therefore, in the given

gapped sector of the phase diagram we find the presence of the long-range dimerization pattern in the

ground state:

(−1)
n〈 ε

(τ)
⊥ (n) 〉 ∼ (−1)

n〈 ε
(τ)
z (n) 〉 ' ε

where

ε = 〈 cos
√

2πKφ 〉 ' m
K
0 =

“
D0D1/J

∗ 2
”K

at weak coupling (m0 << J∗) and becomes of the unit order in the strong coupling, at m0 ≥ J∗.

Turning back to initial spins gives that in the gapped phase the initial spin chain shows a long-range

dimerization order

1

L

X
n

(−1)
n〈 Sn · Sn+1 〉 ∼ (cos ϑ+ − cos ϑ−) ε ,

which coexists with the long-range order pattern of the alternating spin chirality vector

1

L

X
n

(−1)
n〈κ

z
n〉 ∼ (sin ϑ+ − sin ϑ−) ε .



The Ising type sector γ∗ > 1

At γ∗ > 1 both cosine terms in (8) are relevant and, in principle, have to be considered on equal

grounds. Therefore in this case the low-energy sector of the initial spin chain is given in terms of the

double sine-Gordon model

H = u

Z
dx
h1
2
(∂xφ)

2
+

1

2
(∂xθ)

2
+

m0

πα2
cos βφ +

M0

πα2
cos 2βφ

i
, (14)

with β =
√

4πK, which describes an interplay between two relevant perturbations to the Gaussian

conformal field theory H0 with the ratio of their scaling dimensions equal to 4.

Since both terms are relevant, acting separately, each leads to the pinning of the field φ in corresponding

minima, however because these two perturbations have different parity symmetries, the field configurations

which minimize one perturbation do not minimize the other.

This competition between possible sets of vacuum configurations of the two cosine terms is resolved

via the presence of the quantum phase transition in the ground state. The very presence of the QPT can

already be traced performing minimization of the potential

V(φ) = m0 cos βφ + M0 cos 2βφ , (15)

where the transition corresponds to the crossover from a single well to a double well profile of the potential.



Indeed, one can easily obtain, that at M0<m0/4 the vacuum expectation value of φ field which

minimizes V(φ) is given by < φ >= 0 and therefore in this case the dimerized phase is realized ground

state. However, at M0 > m0/4, instead of (11) the φ field is condensed in the minima

〈φ 〉 = φ0 =
1

β
arccos (m0/4M0) (16)

and, as the result, in addition to the dimerization pattern

(−1)
n〈 ε

(τ)
i (n) 〉 ∼ 〈 cos(

√
4πKφ0)〉 i =⊥, z (17)

the ground state of the τ -spin system is characterized by the long range antiferromagnetic order with the

amplitude of the staggered magnetization

m = (−1)
n〈 τ

z
n 〉 ∼ sin

√
4πKφ0 . (18)



Following the analysis [G. Delfino and G. Mussardo, Nucl. Phys. B 516, 675 (1998)] one can show

that the model displays an Ising criticality with central charge c = 1/2 on a quantum critical line.

The critical properties of this transition have been investigated in detail by mapping the DSG model onto

the deformed quantum Ashkin-Teller model [M. Fabrizio, A. O. Gogolin, A. A. Nersesyan, Phys. Rev.

Lett. 83 2014 (1999).]

The dimensional arguments based on equating physical masses produced by the two cosine terms

separately is usually used to define the critical line. Using (11) one finds

(
m = m

1/(2−K)
0

M = M
1/(2−4K)
0

Equating these two masses we obtain the following expression for the critical value of the chain anisotropy

parameter vs. DM coupling:

γ
∗
c2 = 1 +

„
D0D1

J∗ 2

«2−4K
2−K

.



Numerical Results

The computations were carried out for finite-length systems with L = 48, 64, 96 and 128 sites, using

the ALPS library

[**1] A.F. Albuquerque et al. (ALPS collaboration), Journal of Magnetism and Magnetic Materials

310, 1187 (2007).

[**2] B. Bauer et al. (ALPS collaboration), Journal of Statistical Mechanics: Theory and Experiment

05, P05001 (2011).

System parameters are set to J = 1, D0 = tan(π/6) and D1 = 0.2, while the bare value of the

anisotropy ∆ is varied providing values of −1 < γ∗ ≤ 6. This restricts the ground state analysis to the

Stot
z = 0 subspace.



Excitation gap.

∆exc = E0(N + 1) + E(N + 1)− 2E(N) , (19)
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Order Parameters
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Summary

We have studied the ground-state properties of the one-dimensional spin S = 1/2 XXZ Heisenberg

chain with spatially modulated Dzyaloshinskii-Moriya (DM) interaction. Our goal was to describe the

interplay between the uniform and staggered parts of the DM interaction which, when acting alone, do

not change the excitation spectrum of the system. We have shown that joint effect of the uniform and

staggered components of the DM coupling opens a possibility for formation of unconventional gapped

phases in the ground-state of the system
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Thank you for attention!


