Physical Limits to (Quantum-) Information Processing

Physics of Information

"Information is physical"

Rolf Landauer (1927-1999)

How fast can a computer be?

Limited, e.g, by speed of light

How much power does it need?

Cost for power, cooling requirements

How much information can it store / process ?

Structure size, entropy, ...

Physics of Information

"Information is physical"

Rolf Landauer

(1927-1999)

At the fundamental level, nature must be described quantum mechanically

At the fundamental level, information science must be quantum mechanical

Is it possible to exploit the quantum mechanical properties of information and information processing to obtain more powerful devices

> Quantum information processing Quantum communication

Computers

mechanical

electromechanical programmable

Electronic Computers

Eniac 1

Minicomputer

Higher Computational Power

Exponential Growth

transistors on a chip grows exponentially

Gordon Moore

Size Scales

The Shrinking Transistor

The Smallest Computer Yet

C60 molecules on Si, IBM Zürich

Single Molecule Transistor

1 Atom - Switch

The Shrinking Transistor

Particles and Waves

STM image of Fe atoms on Cu

> Crommie, Lutz & Eigler, IBM 20

Charge Quantization

Electronic circuits behave qualitatively different when their size approaches atomic dimensions.

Small Capacitors

Model: spherical capacitor, radius r

Capacitance $C = 4\pi\epsilon_0 r$

Example: r = 5 nm $C = 5.5 \cdot 10^{-19} \text{ F}$

Voltage change of 1 V moves 3.4 electrons

Single Molecule Transistor

What are the fundamental physical limits ?

Differences for quantum / classical computers

Information and Physics

Every computational process proceeds in a physical system

Output

0011010

Today's computer use classical physics

Energy Consumption

Cooler Computers

Random motion of particles

Cooler Computers

Maxwell' Demon

Maxwell' Demon

If we conceive a being whose faculties are so sharpened that he can follow every molecule in its course, such a being, whose attributes are still essentially finite as our own, would be able to do what is at present impossible to us. For we have seen that the molecules in a vessel full of air at uniform temperature are moving with velocities by no means uniform... Now let us suppose that such a vessel is divided into two portions, A and B, by a division in which there is a small hole, and that a being, who can see the individual molecules, opens and closes this hole, so as to allow only the swifter molecules to pass from A to B, and only the slower one to pass from B to A. He will thus, without expenditure of work, raise the temperature of B and lower that of A, in contradiction to the second law of thermodynamics.

James Clark Maxwell, Theory of heat, 1871

Maxwell' Demon

System at equilibrium

The demon and the frictionfree trap door

System with lower entropy Violation of the second law

Processor Speed

Size de Broglie length

1

Electrons

Energy $k_B T$

Is there a limit ?

When quantum effects dominate Will devices still work? Are new concepts needed?

Cooler Computers

Fundamental Computer Science

Algorithms: Sets of rules for solving computational problems

Church-Turing Hypothesis

One version:

"All computable functions are computable by Turing machine."

Alonzo Church. An unsolvable problem of elementary number theory. Am. J. Math., <u>58</u>, 345–363 (1936).

Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. Ser., <u>42</u>, 230 (1936). See also ibidem <u>43</u>, 544.

Computable: algorithm exists that terminates

Efficiently computable: Resources scale at most polynomially with the size of the problem

Simple Computations

1+1 5 · 7 3945 / 789 987654321 · 123456789

- There is an algorithm
- Execution time does not increase too rapidly if the numbers
 Ak increase

Abu Dscha'far Muhammad ibn Musa al-Chwarizmi (780-850)

Decryption with private key ~ multiplication

Exponential Growth

Sissa ibn Dahir invents chess ~ 300 b.c.

> Sultan Shihram grants him a wish

1 grain of rice on field 1 2 on field 2 4 on field 3

Exponential Growth

Computational Complexity

Prime factors of $16637 = 127 \times 131$

The computational effort increases with the number of digits.

Factoring on classical computer $e^{c\ell^{1/3}\log(\ell)^{2/3}}$ $\ell = #$ digits

Chuantumogeners Qualitatively identical on all possible computers

Why Quantum Computers ?

Example of a classically hard problem: find the square-free part of a number, e.g. $175 = 7 \cdot 5^2$

Why Quantum Computers ?

Simulating Quantum Systems

Another problem

1982 Richard Feynman

R.P. Feynman, 'Simulating physics with computers', Int. J. Theor. Phys. <u>21</u>, 467-488 (1982).

The computational power required to simulate quantum systems grows exponentially with the size of the system.

Scaling of Simulation Times

Example: Spin systems

2 unitary operations

3 different classical computers, 3 different software packages

Exponential Scaling

Feynman's Solution

Feynman's proposed solution:

A computer is required that is itself a quantum mechanical system

History of QIP

1982 Benioff:

Quantum computers are universal

1993 Bernstein, Vazirani and Yao: Quantum systems are more powerful than classical computers

1994 Coppersmith, Shor: Quantum Fourier transform, factorization

1997 Gershenfeld, Chuang, Cory, Fahmy, Havel: NMR Quantum computer

Future Computers ?

www.usatoday.com

It wouldn't operate on anything so mundane as physical laws. It would employ quantum mechanics, ..

Beyond the PC: Atomic QC

Quantum computers could be a billion times faster than Pentium III

By Kevin Minney USA FODAY

Around 2030 or so, the computer on your deals might be filled with liquid insead of transistors and chips. It would be a quantum computer. It wouldn't operate on anything so munching as physical lews. It would employ quantum mechanics, which quickly gets into things such as trioperation and alternals on verses and is, by all accounts, the weightest shift known to man.

The organization computer would be a datern and the probably would do calculations 2 good , balatin times faster than a soft in TH FC. It would be able to search the entire internet — magne how much will be on the Net in 2000 — in a WhY, and could break any cryptographic security child ever invested, no doubt making the CIA very, very nervous

Scurel like science didion¹⁰ R5 and Over the past year, quantum computers have become a serious contender for What Comes Next — after Moores Law takes the current architecture of transistors incluated on micropricessory as for as i, can go in increasing processing prover.

Quantum computers do calcuallons using atoms instead of computer chins, The first quantum computers are still rough, expensive one-shot science experiments. But since last year they have been buill and have shown that the science works Labs at places like the Massachusetts Institute of Technology and Oxfort University are pumping to quantum computer projects. Companies such as IEM and Hewlet-Packard are leaping in. The federal government, which is both worried about and intrigued by quantum computing has set up one of the most well-funced quantum computing lobs at Los Alamos National Laboratory,

"This area has gone off the c big bang. It's breathtaking," says ftm: Williams, head of Hewlett Pockar i's laiss "The potential is so large and it would be so dis rup ive, it could completely change the

Digital Information

"Hello" = 72, 101, 108, 108, 111 = 01001000 01100001 01101100

Quantum Mechanics and Computing

Classical electronics ~ semiconductor electronics

Quantum mechanics is the foundation of solid state physics:

- band structure
- semiconductors vs. metals
- resistivity
- thermal properties
- etc.

Engineers do not need to know quantum mechanics: all these effects can be summarized in terms of material parameters (I/V curves, conductivities etc.)

Today's computers can be described classically

Models of Computation

N-bit register

Example 1 : NOT

Boolean logic

AND gate loses information $\overline{}$ Minimal energy dissipation : $k_BT ln2$

Digital Information

Quantum logical operations are reversible

No dissipation

Logical operations driven by control fields

Gates for Qubits

1 qubit, e.g. NOT

e.g. CNOT

Basics of Quantum Computing

The power of the implementation depends on the number of qubits in the quantum register:
N qubits provide 2^N computational basis states

Logical operations act on superposition states "Quantum parallelism"

Nuclear Magnetic Resonance

 $|1\rangle$

Implementations

Nuclear Magnetic Resonance (NMR)

Trapped lons

Photons

... and more, e.g. neutral atoms, defects in solids, quantum dots, eleg

Scalability and Decoherence

Main source: coupling to environment Errors are difficult to correct in quantum computers

Will it Work ?

Will quantum computers replace classical computers?

No!

Will quantum computers be useful ? Yes!

Answer 1: Yes: Quantum computers are useful for quantum simulations.

Quantum Simulations : Localization

Physical system: nuclear spins

Quantum Simulations : Localization

Physical system: nuclear spins

Will it Work ?

Will quantum computers replace classical computers?

No!

Will quantum computers be useful ? Yes!

Answer 1: Yes, they are! Quantum computers are useful for quantum simulations.

Answer 2: Yes, since future computers will use quantum effects.

Answer 3: The most important applications of any sufficiently advanced technology are always created by this technology. (Kroemer, 1995: The lemma on new technologies)

Applications ?

Answer 3: The most important applications of any sufficiently advanced technology are always created by this technology. (Kroemer, 1995: The lemma on new technologies)

My proposal to develop the doubleheterostructure laser was turned down for the following reason:

"This development cannot possibly have any applications"

Herbert Kroemer, Nobel price lecture, RMP 73, 783-793 (2001).

Laser Applications

Potential Applications

Quantum Image Processing

Task: detect border between 2 colours

Phys. Rev. X 7, 031041 (2017).

More Details ?

Joachim Stolze / Dieter Suter Quantum Computing A Short Course from Theory to Experiment

2. Edition - 2008 265 Pages, Softcover ISBN 3-527-40787-1 Wiley-VCH, Berlin

Other textbooks:

http://e3.physik.uni-dortmund.de/~suter/Vorlesung/QIV_WS15/qcomplit.pdf 75

Conclusions

Physics set limits on the perform For computers for for you for the side of the side of

Quantum computers can outperform classical computers for some problems