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Physics of Information

“Information is physical”

Rolf Landauer
(1927-1999) '

How fast can a computer be?

. Limited, e.g, by speed of light

How much power does it need?

. Cost for power, cooling requirements

How much information can it store / process ?

. Structure size, entropy;, ...



Physics of Information
“Information is physical” N

Rolf Landauer |
(1927-1999)

At the fundamental level, nature must
be described quantum mechanically

At the fundamental level, information science must be quantum mechanical

p
s it possible to exploit the quantum mechanical
properties of information and information

© processing to obtain more powerful devices @
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Quantum information processing
Quantum communication




Computers
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. Electronic Computers
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Minicomputer




Higher Computational Power

How could this happen?

e — m——
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Exponential Growth

# transistors on a chip grows exponentially

A

1027
108 7
1077

106

# Transistors
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104 -
2300
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1971 1980 1990 2000 2010

Gordon Moore

Year of introductjon



Size Scales




The Shrinking Transistor

1000 . .
Semiconductor industry

roadmap

today

100 -

—
)
|

Size [nm]

Intel 30 nm transistor

Size of 1 Atom

2000 2020 2040
Year
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The Smallest Computer Yet
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Single Molecule Transistor
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1 Atom - Switch

Where are the




The Shrinking Transistor

1000
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100 -

43.1nm
Intel 30 nm transistor

Coherence length of electron
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SiZe of 1 Atom
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Size [nm]

2000 2020 2040
Year
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Particles and Waves

STM image of
Fe atoms on Cu




Charge Quantization

Electronic circuits behave qualitatively different when their
size approaches atomic dimensions.

classical gquantum mechanical
t 1 I/f =3e E

¢

;ﬁ*

I/f =e

I/f =2 —

Charge
Charge

ﬁﬁ“

.| . - . . ] .. - . ¢ ../ ... | )

1.54 1.544 1.548 1.552
Voltage [V] Voltage [V]
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Small Capacitors

Model: spherical capacitor, radius r
Capacitance C' = 4mwegr

Example:r=5nm @ C=5510"19F

Voltage change of 1V moves 3.4 electrons

22



Single Molecule Transistor

What are the fundamental
physical limits ?

.~-"‘; Q’
4 ‘ A

Differences for quantum

. / classical computers




Information and Physics

Every computational process proceeds in a physical system
Output

Today’'s computer use classical physics

=> "“Classical Computers”

24



Energy Consumption

Energy consumption per cycle

=
S

1 PC would consume
~1020W =101" GW

Earth’s surface covered
with power stations

Energy consumption [pJ] —

| 10—18

——Y

10-10 -1

I I
1990 2010
Year 25

| |
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Cooler Computers

Energy consumption [pJ]

10-10

Energy consumption per cycle

“Brownian Motion”
kB T Switches become unstable

I I I
1990 2010

Year

I I
1950 1970
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Brownian Motion

Random motion of particles

v

Also for electrons in circuits

May trigger switches

30



Cooler Computers

1010

Energy consumption [pJ]

10-10

Energy consumption per cycle

today

“Brownian Motion”
kB T Switches become unstable

| Minimum dissipation for
2010 Boolean logic

|
1990
Year

I I
1950 1970
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Maxwell’ Demon




Maxwell’ Demon

If we conceive a being whose faculties are so sharpened that he
can follow every molecule in its course, such a being, whose
attributes are still essentially finite as our own, would be able to
do what is at present impossible to us. For we have seen that the
molecules in a vessel full of air at uniform temperature are moving
with velocities by no means uniform... Now let us suppose that
such a vessel is divided into two portions, A and B, by a division in
which there is a small hole, and that a being, who can see the
individual molecules, opens and closes this hole, so as to allow
only the swifter molecules to pass from A to B, and only the slower
one to pass from B to A. He will thus, without expenditure of work,
raise the temperature of B and lower that of A, in contradiction to
the second law of thermodynamics.

James Clark Maxwell, Theory of heat, 1871

33



Maxwell’ Demon

System at equilibrium

R — T

The demon and the friction-
free trap door

e — e E———

System with lower entropy
Violation of the second law
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Processor Speed

A

Intel Microprocessors

Pentium |
QX e .00
o® Core
1000- Pentium 1|
Celerohh ©°
N 100 Dentium O *Processors
= 80486 ~® get too hot
3 80386 @
8 104 80286-"
5 808‘0 o “Haswell brings no significant increase ..."
O
O 1- o
| | | | | | >
1970 1980 1990 2000 2010

Year of introduction
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Quantum Effects

Size de Broglie length
# Electrons 1

Energy kT

Is there a limit ?

When quantum effects dominate

Will devices still work?
Are new concepts needed?

36



Cooler Computers

1010

Energy consumption [pJ]

10-10

Energy consumption per cycle

kgT barrier limits classical computers,
does not apply to quantum computers

today

“Brownian Motion”
kB T Switches become unstable

| Minimum dissipation for
2010 Boolean logic

|
1990
Year

I I
1950 1970
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Fundamental Computer Science

Muhammad ibn Musa aI-
Khwarizmt (ca. 780 - 850)

| p‘"
A n “
g |

1 Algorlthms:

‘Sets of rules for solving computational problems




Church-Turing Hypothesis

One version:

“All computable functions are computable
by Turing machine.”

Alonzo Church. An unsolvable problem of elementary number theory.

Am. J. Math., 58, 345-363 (1936).

Alan M. Turing. On computable numbers, with an application to the

Entscheidungsproblem. Proc. Lond. Math. Soc. Ser., 42, 230 (1936).
See also ibidem 43, 544.

Computable: algorithm exists that terminates

Efficiently computable: Resources scale at most
polynomially with the size of the problem

39



Simple Computations

1+1

57

3945/ 789

987654321 - 123456789

GHOYIAG O CCCPO

v 2]
e 02!

v
A

-
A

oY

\ 2z
A A

Py

Simple: :
« Thereis an algorithm MUXaMMeQ

afb-XOPE3MU

e Execution time does not increase

FOO rapidly if the numbers Abu Dscha'far Muhammad ibn
INCrease Musa al-Chwarizmi (780-850)



leflcult Tasks

Prime factorsof 15=| 3

/7=\|7 |11

/031=|79 | -| 89

1092001 = |677 |- (1613

Decomposition : hard

Difficult:

B ———

Multiplication : easy

Computing time grows %xponentiall_y)Nith the size of the input

Application public key cryptography:

Decryption without private key ~ decomposition

Decryption with private key ~ multiplication
4



Exponential Growth

Sissa ibn Dahir invents chess
~ 300 b.c.

Sultan Shihram grants
him a wish

1 grain of rice on field 1
2 on field 2
4 on field 3

42



Exponential Growth

world rice
production per year
500 Mio t

43



Computational Complexity

Prime factors of 16637 =| 127 | x | 131

The computational effort increases with the number of digits.

: : 1/3 2/3 ..
Factoring on classical computer ¢ log(£) ¢ = # digits

Chuathttumnganepisiter £2log(2) log(log(é))

Qualitatively identical on all possible computers

Example
£ 50 500 2000
classical 1s 553 days 16 Mio years

guantum 1 hour 9 days 6 months .



Why Quantum Computers ?

Example of a classically hard problem: find the square-free part
of a number, e.q. 175 =7 - 52

1050- :
- Inefficient
c
35 1040-
O
S
E 1030-
£
'E 1020-
RS
§ Quantum: Shor fﬁ o
g 100 erncient
Ll

0 100 20|O>() J. Li, X. Peng, J. Du, and D. Suter,

0
# digits Sci. Rep. 2, 260 (2012). 45



Why Quantum Computers ?

Example: find the square-free part
of a number, e.q. 175 =7 - 52

10%- _nefficient

E 00 | VSome problems can be solved MUCH
e 0’5 Wefﬁciently by quantum computers !
N ) ¥ cu— age of universe

E

S 107 x 1000000000000p0000000 (1020)

% L oT0 Quantum:Shor | ] seCf)nd

X Gaul efficient

>
100 2()|()() J. Li, X. Peng, J. Du, and D. Suter,

0 .
# digits Sci. Rep. 2, 260 (2012). 46



Simulating Quantum Systems

Another problem

1982 Richard Feynman

R.P. Feynman, 'Simulating physics with computers’,
Int. J. Theor. Phys. 21, 467-488 (1982).

-

-

The computational power
required to simulate quantum
systems grows exponentially
with the size of the system.

47



Scaling of Simulation Times

Example: Spin systems
2 unitary operations
3 different claisical computers, 3 different software packages - /‘

10000 y

1000

100

10

Execution time /s

1

0.1

0.01




Exponential Scaling

Exponential increase = inefficient

&

>

a4
&
S

\J/

\

0.1
Duration hD : 4 years =108 s ~ 15 spins

0.01

Age of uhivelse 714 f)illién#y ars’= 49019s ~23 spins

pINS
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Feynman’s Solution

Exponential increase = inefficient

10000 . (c\\

=
=
Ne

100
<»>§\< /

Execution time /s
S
o\
/))CP

el " w8
Al 4 e 0.01
/. .‘(/li ' .

Feynman’s proposed solution:

A computer is required that is itself
a quantum mechanical system

N
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History of QIP

1982 Benioff:
Quantum computers are universal

1993 Bernstein, Vazirani and Yao:
Quantum systems are more powerful
than classical computers

1994 Coppersmith, Shor:
Quantum Fourier transform, factorization

1997 Gershenfeld, Chuang, Cory, Fahmy, Havel:
NMR Quantum computer

51



Future Computers ?

COVER STORY

Beyond the PG: Atomic QC

Quantum computers could be a hillion times faster than Peatium I
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Digital Information

“Hello”=72, 101,108, 108, 111 = 01001000 01100001 01101100

1Bit Physical representation
logical Voltage Magnetization
value

1

. ---"

¥
d |

-, -‘\?" ’;-'
... : : ..a‘ ’ 4 ) .;
» . 1 (ﬂ ' ‘5‘
I b N '-' .
el I H W
; et 11
g2 - ‘
L & G
NetSTmrdt -
ot

'l
: 2
: 1 o=y o S\
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Quantum Mechanics and Computing

Classical electronics ~ semiconductor electronics

Quantum mechanics is the foundation of solid state physics:
- band structure
- semiconductors vs. metals
- resistivity
- thermal properties
- eftc.

Engineers do not need to know quantum mechanics:
all these effects can be summarized in terms of material
parameters (I/V curves, conductivities etc.)

Today’s computers can be described classically

54



Models of Computation

N-bit register

Step 1

Step 2

55



Classical Processing

Example 1: NOT Boolean logic

Input Output
0 1
-

AND gate loses
Example 2 : AND

information

Input Output
00 0
) — Minimal energy

10

0
0 dissipation :
11 1

ksgT In2

56



Digital Information

Classical Quantum mechanical
2 different voltages 2 Y. "gyy
encode 1 bit QUblt
V 4 : F superposition
0

Natural Qubit:
Spin 1/2

B ——s—sm



Unitary Transformations

f Quantum register
Logical operation W _ ., = UUW. e KRN oo
)

-' ) Quantum logical operations are reversible
) No dissipation

) Logical operations driven by control fields

58



Gates for Qubits

1 qubit, e.g. NOT




2 Qubit Gates

e.g. CNOT

Control qubitw ( Target qubit

00 00
01 01
10 - 11 Target qubit is

11 10 flipped if control
qubit =1

60



‘Basics of Quantum Computing

The network model

nitiali- Quantum-
. register Processor Readout
zation / l .
0
2 step 1 step 2 step N —|1)
8 \:> \:> \:> eee o \:> I — O>
8 U, = e—i?-[17'1 U, = 6—%’%27‘2 Uy = e—iHNTN
0
0

@ The power of the implementation depends on the
number of qubits in the quantum register:
N qubits provide 2N computational basis states

@ Logical operations act on superposition states
= “Quantum parallelism”
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Nuclear Magnetic Resonance

Nuclear s
[=1/2

62



Implementations

. Q@ Photons
O NUCIear Magnetlc qutrit-qubit source  H,_s) Py Hge) qutrittomography
Resonance (NMR) Sbic

—} N ==

Nres |12 ? @

Js0% Bs | 4 W D1 D2 \/ \ D3 C
PRL 100, 060504 (2008)
@ Superconductors

-
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‘Scalability and Decoherence

Decoherence causes errors

Main source: coupling to environment
Errors are difficult to correct in quantum computers

64



Will it Work ?

~——  Will quantum
— ... computersreplace No |
' classical computers?

Will guantum computers be useful ? Yes !

Answer 1: Yes: Quantum computers are useful for quantum
simulations.



Quantum Simulations : Localization

Physical system: nuclear spins




Quantum Simulations : Localization

Physical system: nuclear spins

[
~ o—
F ’
—
O
e
T
-3 .
- O .
= 5’ Delocalized locali= e
S (. Large quantum ﬁ
0.00 | No individual control )
- tions
. ific simula
- SU\tab\e far $OFE antum computer _
ose qu
Experimental observ{ | Not a geﬂera\ pUTp ~rry=000y systems with dipolar interactions

G. A. Alvarez, D. Suter, R. Kaiser, Science 349, 846 (2015).



Will it Work ?

~——  Will quantum

| /. computers replace No |

classical computers?

[ ——
ol g
7
ot e
e >
.\‘—A
oo
I s 3 ‘ 5 "

# Spim

Will quantum computers be useful ? Yes !

Answer 1: Yes, they arel Quantum computers are useful for
quantum simulations.

Answer 2: Yes, since future computers will use quantum effects.
Answer 3: The most important applications of any

sufficiently advanced technology are always created by this
technology. (Kroemer,1995: The lemma on new technologies)



Applications ?

Answer 3: The most important applications of any
sufficiently advanced technology are always created by this
technology. (Kroemer,1995: The lemma on new technologies)

My proposal to develop the double-
heterostructure laser was turned down
for the following reason:

“This development cannot possibly
have any applications”

Herbert Kroemer, Nobel price lecture, RMP 73, 783-793 (2001 ).



Laser Applications

optical data
transmission

Material processing MEd'Cl
Light shows easurement




Potential Applications

Encoding Processing Decoding

——

Classical
0110...01
2" bits

G=PFQ

G11]

1 A1
U=0 ®P)‘g>=:

n qubits

o &

Quantum 031041 (2017).

Phys. Rev. X 7/,



Quantum Image Processing

Task: detect border between 2 colours

1 qubit
operatlon @ @

Phys. Rev. X 7, 031041 (2017).



More Details ?

Joachim Stolze / Dieter Suter
Quantum Computing
A Short Course from Theory to Experiment

Quantum Processor
ister

‘ \ Readout

Step 2 Step N

5
£
\

2. Edition - 2008

265 Pages, Softcover
ISBN 3-527-40787-1
Wiley-VCH, Berlin

| R

0 EEEEEEE

Other textbooks: Y - .
http://e3.physik.uni-dortmund.de/~suter/Vorlesung/QIV_WS15/qcomplit.pdf .



Conclusions

Physics set limits on the perfor~
of computers




