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The power of quantum computation

What makes quantum circuits/processes so hard to simulate?
– Exponentially large Hilbert space?
– Superposition of many ‘classical’ processes?
– Entanglement?
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Stabilizers and Gottesman-Knill

– A class of quantum circuits that can be efficiently simulated:

– Initialize in a stabilizer state – includes entangled states (Bell, GHZ, cluster)
– Unitaries in the Clifford group – including Paulis, CNOT, Hadamard, Phase 

gate

– Measure in basis of stabilizer states

– Computation is somehow “classical”

– Stabilizer circuits can be viewed as supervening on a classical dynamical 
computation through the use of a nonnegative quasiprobability representation

An efficiently simulatable subtheory

Aaronson and Gottesman, PRA (2004)
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Quasiprobability
representations
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Quasiprobabilities

– Classical hidden variables on a phase space 

– Real valued, normalized like probability distributions

– Born rule as you’d expect:

– But can go negative!

Quasiprobability representations:  another way of describing quantum mech.

⇢ ! W⇢(�)States Like a probability distribution

U ! WU (�|�0)Unitaries Like a conditional probability

E ! W (E|�)Measurements Like a conditional probability

⇤

Tr[EU⇢U†] =
X

�,�02⇤

W (E|�)WU (�|�0)W⇢(�
0)
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Dual frames formalism
F (�) : � 2 ⇤ G(�) : � 2 ⇤

A =
X

�2⇤

G(�)Tr[AF (�)] 8 A

Two ‘frames’:

satisfying

and
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Negativity and nonclassicality

Classical Quantum
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Quasiprobabilities for finite quantum systems

Finite-dimensional quantum systems typically use a discrete phase space

Gibbons, Hoffman, Wootters, PRA (2004); Gross, JMP (2006)
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Negativity and nonclassicality

Classical Quantum
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Operationalizing nonclassicality

– Nonnegativity = simulatability

Monte Carlo on the hidden variables

– Negativity = contextuality

Negativity in all quasiprobability
representations is equivalent to a proof of 
contextuality

– Negativity = magic

Negative states are those that can be distilled to 
magic states, that can supplement Clifford gates 
to allow universal quantum computation

Negativity in a quasiprobability can be related to notions of nonclassicality

Veitch, Mousavian, Gottesman, Emerson, NJP (2014)
Howard, Wallman, Veitch, Emerson, Nature (2014)

Spekkens, PRL (2007)

Veitch, Ferrie, Gross, Emerson, NJP (2012)
Mari and Eisert, PRL (2012)
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Structure of our result

1. Quantify negativity – review
2. Poly-precision estimators for Born rule probabilities
3. Born rule probabilities as quasiprobabilistic sum over trajectories
4. Construct a true probability distribution of trajectories as a Markov chain
5. Construct an unbiased estimator
6. Bound convergence of this estimator in terms of the amount of negativity

Main Result
Estimator converges to true quantum mechanical probability at a rate 
determined by the amount of negativity in the circuit
If the negativity is polynomially bounded -> efficiently yields a poly-precision 
estimate 

Pashayan, Wallman, Bartlett (2015)

› Can we push the boundary on simulatability?
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Quantifying negativity
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Quantifying negativity

Define the negativity of a state: the 1-norm of its quasiprobability representation

Negativity is multiplicitive, not additive (could take the log of this quantity)

If is nonnegative, then

Veitch, Mousavian, Gottesman, Emerson, NJP (2014)

M⇢ =
X

�2⇤

|W⇢(�)|

M⇢ = 1W⇢

M⇢ > 1M⇢ = 1 M⇢ = 1
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Negativity for states, unitaries, measurements

Quantum States

Measurements (POVM elements)

M⇢ =
X

�2⇤

|W⇢(�)|

ME =
X

�2⇤

|W (E|�)|

Unitaries
MU (�) =

X

�02⇤

|WU (�
0|�)|

MU = max�2⇤MU (�)

Point negativity:

Negativity:
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Estimating measurement 
probabilities
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Trajectories in phase space
What do quasiprobabilities tell us about the probabilities of measurement 
outcomes?

p =
X

�0,�1,...,�L

W (E|�L)WUL(�L|�L�1) · · ·WU1(�1|�0)W⇢(�0)

Trajectories through 
phase space

Quasiprobability associated to each trajectory

If these were all nonnegative, it provides a 
natural estimation algorithm

But what if they are negative?

Veitch, Ferrie, Gross, Emerson, NJP (2012)
Mari and Eisert, PRL (2012)

Can we estimate p by sampling from some true probability distribution?
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What’s a good estimator?

What would make a good estimator of a probability associated with a 
measurement outcome?

Poly-precision estimator:  for any fixed confidence, yields an estimate within e
of the true Born rule probability using resources that scale polynomially in 1/e.



The University of Sydney Page 19

True probabilities from quasiprobabilities

W (~�) = W (E|�L)WUL(�L|�L�1) · · ·WU1(�1|�0)W⇢(�0)

Quasiprobability for a trajectory

May be negative, so how do we sample?

First attempt:  sample from

Estimate of the probability for each trajectory is

This gives an unbiased estimator, minimizes the range, and has the smallest 
variance of all estimators over the space of trajectories…
But is impossible to sample from!

Pr(~�) =
|W (~�)|
Mc

Mc =
X

~�

|W (~�)|

q̂1 = McSign[W (~�)]
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Our algorithm

Circuit with an efficient description (product input + output, local unitaries)
1. Sample initial point in trajectory from modified distribution

2. At each timestep l=0,…,L, sample from conditional distribution

3. Estimate based on single trajectory

Pr(�0) = |W⇢(�0)|/M⇢

p̂1(�) = M⇢Sign[W⇢(�0)]
LY

l=1

⇥
MUl(�l�1)Sign[WUl(�l|�l�1)]

⇤
WE(�L)

Pr(�l|�l�1) = |WUl(�l|�l�1)|/MUl(�l�1)
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Properties of this estimate

Properties of estimator  
– Efficiently computable
– Unbiased estimator of Born rule probability

– Not a probability!  Lies in the interval [�M,+M]

M = M⇢

LY

l=1

MUlmax�L |WE(�L)|

Total negativity bound:

p̂1(�) = M⇢Sign[W⇢(�0)]
LY

l=1

⇥
MUl(�l�1)Sign[WUl(�l|�l�1)]

⇤
WE(�L)

hp̂1(~�)i =
X

~�

p̂1(~�)Pr(~�)

=
X

~�

p̂1(�)
|W⇢(�0)|

M⇢

LY

l=1

|WUl(�l|�l�1)|
MUl(�l�1)

=
X

~�

W⇢(�0)
LY

l=1

WUl(�l|�l�1)WE(�L)

= Pr(E|⇢, U)



The University of Sydney Page 22

Sampling and convergence
Compute for s independent trajectories, take the average
– Unbiased, and bound to the interval
– Use Hoeffding inequality for upper bound on convergence:

Average of s samples will be within     of the quantum probability with 
probability  if the total number of samples taken is

p̂1(�)

[�M,+M]

s(✏, �) =
2

✏2
M2 ln(2/�)

✏
1� �

If the total negativity grows at most polynomially in N, we have an efficient 
estimate of the quantum probability to within , with an 

exponentially small failure probability
✏ = 1/poly(N)
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Example

– Random 100-qutrit Clifford circuit
– Initialize with k magic states

– Measure “0” on the first qutrit
– Number of samples chosen using

– Target precision e=0.01 with 95% confidence

0 2 4 6 8 10

10�5

10�4

10�3

10�2
Target precision

# magic states k

p̂ s
�
hp̂
i

105

106

107

108

# samples s

1p
3
(|0i+ ⇠|1i+ ⇠8|2i)

⇠ = exp(2⇡i/9)

s(k) =
2

✏2
c2k ln(2/�)
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Examples of quasiprobabilities
– Odd-d qudit discrete Wigner function

– All stabilizer states and measurements (+ some more) are nonnegative

– Real-valued qubit discrete Wigner function
– Real stabilizer states and CSS-preserving unitaries

– Qubit quasiprobabilities with nonnegative bases
– 1, 2, 3, or 4 nonnegative bases and finite subgroups of SU(2) – no 

entanglement

– Continuous-variable Wigner function
– Coherent states and squeezed states, linear optics and squeezing
– Implications for BosonSampling?

– Dual frames can be overcomplete – additional flexibility

Gibbons, Hoffman, Wootters, PRA (2004); Gross, JMP (2006)

Delfosse, Guerin, Bian, Raussendorf, PRX (2015)
See also Bravyi, Smith, and Smolin, arXiv:1506.01396

Wallman and Bartlett, PRA (2012)
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Conclusions and future directions

– Operational meaning of negativity:  a measure that bounds the efficiency of a 
classical estimation of probabilities

– Efficient estimation vs sparcity

– Conditioning on intermediate measurements?
– Naïve inclusion:  calculating conditional probabilities requires exponential 

precision
– Or make the conditional operation coherent, and delay measurement to the 

end:  can add negativity

– From estimation to simulation

– An ontology for quantum computing?


