Quantum memories and Schrödinger's Cat

Stephen Bartlett School of Physics

The big question

How do we maintain the coherence of a macroscopic system for a long time in the presence of noise?

The University of Sydney

The big question

How do we maintain the coherence of a macroscopic system for a long time in the presence of noise?

The University of Sydney

?=

The University of Sydney

Quantum vs classical memories

The University of Sydney

What makes a good classical memory?

The University of Sydney

What makes a good <u>quantum</u> memory?

Quantum spin magnets

1-D chain:

BAD

2-D lattice:

Quantum Memories

Alexei Kitaev – 1997

Good quantum memory:

need a spin lattice that emulates 2D quantum electromagnetism on the surface of a donut

The University of Sydney

The University of Sydney

What makes a good memory?

Quantum spin magnets

Low energy errors Can correct flip errors, but not phase errors

Low energy errors Error correction for flip and phase errors! Uncorrectable errors have low energy too

The University of Sydney

'Surface code' architecture for quantum computing

Most common quantum architecture:

- 'Planar' version
- Requires constant measurements of local electric/magnetic flux loops
- Can suppress <1% errors per clock cycle
- 1000's of physical qubits per encoded qubit at realistic error rates

 very large overheads

IBM proto-code device, 2016

You said 'topological' codes... is that topological q computing?

Synthesise new materials with topological phases and anyonic excitations

Develop control techniques to manipulate anyons and process information

Construct topological codes out of these qubits and gates

Build high-fidelity qubits and quantum gates

Spin lattice models

The University of Sydney

The miracle of topological codes...

- Degenerate ground states allow for storage of quantum information
 - No relaxation
- No dephasing (actually exponentially suppressed)
- Errors (excitations) to higher energy levels
 - suppressed by the gap
 - correctable if local
- High thresholds, nice q computing architectures

But: With (most) topological stabilizer codes, quantum information is **not stable** on its own

Need to constantly perform error correction

The University of Sydney

What makes a good memory?

????

Quantum spin magnets

Low energy errors Can correct flip errors, but not phase errors

Low energy errors Error correction for flip and phase errors! Uncorrectable errors have low energy too

The University of Sydney

Toric code in four dimensions

How good are you at picturing 4D?

- 4D Z₂ lattice quantum electromagnetism
- Electric and magnetic 'charges' are not point-like, but loop-like, with *tension*
- Energetics is like the 2D Ising model, but for both electric and magnetic sectors
- Errors need a macroscopic energy to grow
- Finite-temperature phase transition

The University of Sydney

Dennis, Kitaev, Landahl, Preskill 2003

What makes a good quantum memory?

1-D chain:

Low energy errors Can correct flip errors, but not phase errors

Low energy errors Error correction for flip and phase errors! Uncorrectable errors have low energy too

Low energy errors Self-correcting Larger errors cost more energy

The University of Sydney

Quantum memories in 3-D

The University of Sydney

Can we design a self-correcting quantum memory?

5. coupled to a thermal bath at non-zero temperature, lifetime of the encoded qubit scales exponentially in the size of the lattice

No-go theorems for 2 and 3 dimensions

- Lifetime typically given by Arrhenuis law: $~ au \sim \exp(eta \Delta_B)$
- Models in 2D have a constant energy barrier:
 - Bravyi and Terhal (2008) 2D stabilizer models
 - Landon-Cardinal and Poulin (2012) Most 2D topological models (locally commuting projector codes)
 - Deconfined anyons are a hallmark of topological order in 2D
- Most models in 3D have a constant energy barrier:
 - 3D topological stabilizer codes generically have the same problems
 - Yoshida (2011), Pastawski and Yoshida (2014)

energy barrier of logical operator

Symmetry-protected self-correcting quantum memories

Sam Roberts and Stephen Bartlett

6

arXiv:1805.01474

The University of Sydney

What role can symmetry play?

The University of Sydney

From topological order to symmetry-protected topological order

Symmetry-protected topological order

- Restricted form of topological order
- Robust to local perturbations that respect a symmetry

Majorana fermions in nanowires

Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices

V. Mourik,¹* K. Zuo,¹* S. M. Frolov,¹ S. R. Plissard,² E. P. A. M. Bakkers,^{1,2} L. P. Kouwenhoven¹† www.sciencemaq.org SCIENCE VOL 336 25 MAY 2012

Quantum Spin Hall Insulator State in HgTe Quantum Wells

Markus König,¹ Steffen Wiedmann,¹ Christoph Brüne,¹ Andreas Roth,¹ Hartmut Buhmann,¹ Laurens W. Molenkamp,¹* Xiao-Liang Qi,² Shou-Cheng Zhang²

2 NOVEMBER 2007 VOL 318 SCIENCE www.sciencemag.org

Topological insulators

SPT order offers new phenomena

In 3D, topological order and SPT order can coexist and interact

The University of Sydney

The physics of energy barriers in 3D

- 3D topological models encode quantum information on the boundaries
- Bulk excitations can be confined (string-like)
 but boundary excitations are deconfined
- If we can couple the boundary and bulk theories, we can have confinement of all excitations
- An exotic type of symmetry is needed:
 1-form symmetry

A little nugget from string theory!

- A new type of symmetry: 1-form symmetry
- Imposes a Gauss-type law on topological charge
- Natural generalization of on-site (0-form) symmetry
- Global q-form symmetry acts as $U_g(\mathcal{M})$ on a closed q-codimension manifold \mathcal{M}
- Charged excitations have dimension q
- Symmetries impose conservation laws on higherdimensional charged objects
- Think of it a bit like a local gauge symmetry

Baez and Huerta (2010) Kapustin and Thorngren (2013) Kapustin and Seiberg (2014) Giaotto, Kapustin, Seiberg, and Willett (2015) Yoshida (2015)

Symmetry-protected self-correcting memory in 3D

- Simplest model: Z2 x Z2 1-form symmetry
- Bulk model is SPT ordered
 - Bulk excitations are closed loops with tension
 - Two types, on primal and dual lattices
- Boundary is SET ordered
 - Electric and magnetic anyons, like the toric code
 - Symmetry couples these anyons to bulk loops, and confines them
 - Boundary theory should not exist! Anomalous
 - SET model only exists on boundary of SPT bulk
- SPT ordered model is thermally stable!

The University of Sydney

Self-correction, symmetries, and emergence

- 1-form symmetric SPT phases in 3D can be self-correcting quantum memories
- Higher-form symmetries appear necessary for thermal stability, but are very strong symmetry constraints
- 1-form symmetries can be enforced through error correction
- 1-form symmetries can be emergent
 - Can they emerge in a model where all excitations are confined?

The University of Sydney

Gauge color code (Bombin, 2015, 2016) Page 26

Quantum Memories – summary

The University of Sydney

Quantum Science @ Sydney

Quantum Nanoscience

Quantum Control Michael Biercuk

Quantum Theory

Stephen Bartlett Steven Flammia

Quantum Science @ Sydney – come join us!

Quantum information theory group leaders: Stephen Bartlett, Steve Flammia, Arne Grimsmo, Isaac Kim

Postdoc positions now accepting applications:

'Women of EQUS' Deborah Jin Fellowship http://equs.org

Sydney Quantum Academy offering PhD and postdoc positions starting 2020

The University of Sydney