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The big question

How do we maintain the coherence of a macroscopic system for a long time in 
the presence of noise?
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Quantum vs classical memories
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What makes a good classical memory?

Each spin prefers to be aligned with its neighbour(s)

1-D chain: OK

2-D lattice: GREAT

One spin: BAD Low energy errors
No error correction

Low energy errors
Error correction!
Uncorrectable errors 
have low energy too

Low energy errors
Self-correcting!
Larger errors cost more 
energy

Ising spin magnets as classical memories

… but doesn’t preserve quantum info.
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What makes a good quantum memory?

Quantum spin magnets

1-D chain: BAD

2-D lattice: ???
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Quantum Memories

Alexei Kitaev – 1997

Good quantum memory:  
need a spin lattice that emulates 2D 
quantum electromagnetism on the 
surface of a donut
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The toric code Electric flux with no 

terminating charge; 

topologically nontrivial
Magnetic flux with no 

terminating charge; 

topologically nontrivial

A ‘good’ (not ‘great’) q. memory:

• Errors are charge pairs, can be 

measured and corrected

• No string tension/confinement –

pairs have low energy regardless 

of separation – can wander 

around the torus 

• No thermal stability

A simple exactly-

solvable model:

• 4-fold degenerate 

ground space

• ‘Topologically ordered’

• Excitations are 

anyons – electric and 

magnetic charges
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What makes a good memory?

Quantum spin magnets

1-D chain: BAD

2-D lattice: OK

Low energy errors
Can correct flip errors, but 
not phase errors

Low energy errors
Error correction for flip 
and phase errors!
Uncorrectable errors 
have low energy too

“Toric Code”
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‘Surface code’ architecture for quantum computing

Most common quantum architecture:
• ‘Planar’ version
• Requires constant measurements of 

local electric/magnetic flux loops
• Can suppress <1% errors per clock 

cycle
• 1000’s of physical qubits per encoded 

qubit at realistic error rates 
– very large overheads

IBM proto-code device, 
2016



The University of Sydney Page 12

You said ‘topological’ codes… is that topological q computing?

Synthesise new 
materials with 

topological phases and 
anyonic excitations

Build high-fidelity qubits
and quantum gates

Develop control 
techniques to 

manipulate anyons and 
process information

Construct topological 
codes out of these 
qubits and gates

TQFTs, Chern-Simons Spin lattice models
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The miracle of topological codes…

– Degenerate ground states allow for storage of quantum 
information

– No relaxation

– No dephasing (actually exponentially suppressed)

– Errors (excitations) to higher energy levels 

– suppressed by the gap

– correctable if local

– High thresholds, nice q computing architectures

But:  With (most) topological stabilizer codes, 
quantum information is not stable on its own

Need to constantly perform error correction
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What makes a good memory?

Quantum spin magnets

1-D chain: BAD

2-D lattice: OK

Low energy errors
Can correct flip errors, but 
not phase errors

Low energy errors
Error correction for flip 
and phase errors!
Uncorrectable errors 
have low energy too“Toric Code”

????
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Toric code in four dimensions

How good are you at picturing 4D?
– 4D Z2 lattice quantum electromagnetism

– Electric and magnetic ‘charges’ are not 
point-like, but loop-like, with tension

– Energetics is like the 2D Ising model, but for 
both electric and magnetic sectors

– Errors need a macroscopic energy to grow

– Finite-temperature phase transition
Dennis, Kitaev, Landahl, Preskill
2003
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What makes a good quantum memory?

Quantum spin magnets

1-D chain: BAD

2-D lattice: OK

4-D lattice: 4D Toric Code

Low energy errors
Can correct flip errors, but 
not phase errors

Low energy errors
Error correction for flip 
and phase errors!
Uncorrectable errors 
have low energy too

Low energy errors
Self-correcting
Larger errors cost more 
energy

“Toric Code”
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Quantum memories in 3-D
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Can we design a self-correcting quantum memory ?

The Caltech rules
1. a spin lattice
2. local interactions
3. degenerate ground space
4. stable under small perturbations
5. coupled to a thermal bath at non-zero temperature, lifetime of the 

encoded qubit scales exponentially in the size of the lattice
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No-go theorems for 2 and 3 dimensions

– Lifetime typically given by Arrhenuis law:

– Models in 2D have a constant energy barrier:
– Bravyi and Terhal (2008) – 2D stabilizer models
– Landon-Cardinal and Poulin (2012) – Most 2D topological models 

(locally commuting projector codes)
– Deconfined anyons are a hallmark of topological order in 2D

– Most models in 3D have a constant energy barrier:
– 3D topological stabilizer codes generically have the same problems
– Yoshida (2011), Pastawski and Yoshida (2014)

⌧ ⇠ exp(��B)

energy barrier of 
logical operator
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Symmetry-protected self-correcting 
quantum memories

Sam Roberts and Stephen Bartlett

arXiv:1805.01474



The University of Sydney Page 21

What role can symmetry play?
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From topological order to symmetry-protected topological order

Symmetry-protected topological order
– Restricted form of topological order 
– Robust to local perturbations that respect a 

symmetry

Majorana
fermions in 
nanowires

Topological insulators

SPT order offers new phenomena

In 3D, topological order and SPT order 
can coexist and interact
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The physics of energy barriers in 3D

– 3D topological models encode quantum 
information on the boundaries

– Bulk excitations can be confined (string-like) 
but boundary excitations are deconfined

– If we can couple the boundary and bulk 
theories, we can have confinement of all 
excitations

– An exotic type of symmetry is needed:
1-form symmetry

eC

eCZflux
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A little nugget from string theory!
– A new type of symmetry:  1-form symmetry
– Imposes a Gauss-type law on topological charge

– Natural generalization of on-site (0-form) symmetry
– Global q-form symmetry acts as

on a closed q-codimension manifold
– Charged excitations have dimension q
– Symmetries impose conservation laws on higher-

dimensional charged objects

– Think of it a bit like a local gauge symmetry
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Figure 3: Placeholder Cluster lattice/term and symmetry fig

An alternative description in terms of a circuit description shows that the cluster state
is short range entangled. Consider the circuit UCZ comprised of controlled-Z gates between
all neighbouring qubits

UCZ “
π

u„v

CZpu,vq (38)

where the product of pairs u „ v is over all qubits that are neighbouring (each qubit is
neighbours with qubits on the boundary of its (dual) cell). One can confirm that

HX :“ UCZHCU
:
CZ “ ´

ÿ

�2P�2Y�2

Xp�2q. (39)

From this relation we see that the cluster state can be prepared from a product state with
the circuit UC, as

| Cy “ UCZ |`yb|�2Y�2| , (40)

where |`y is the `1 eigenstate of Pauli X. Since UCZ can be represented by a constant depth
quantum circuit, the cluster state is short-range entangled. In the next section we identify a
global 1-form pZ2q2 symmetry of the model and show that | Cy resides in a nontrivial SPT
phase at zero temperature with this symmetry.

3.3 1-form symmetry

The cluster state is a short-range entangled state and so in the absence of a symmetry it
belongs to the trivial phase. We introduce a pZ2q2 1-form global symmetry of the model and
show that the cluster state is in a nontrivial SPT phase with this symmetry. Formally, we
have one copy of a Z2 1-form symmetry for each sublattice, given by a unitary representation
S of the 2-boundary and dual 2-boundary groups given by

Spb2q :“ Xpb2q, Spb2q :“ Xpb2q, (41)

for any 2-boundary b2 and dual 2-boundary b2. Any 2-boundary can be viewed as correspond-
ing to a closed surface M of the lattice. Then the 1-form symmetry can be loosely viewed as
being imposed by symmetry operators supported on qubits residing on closed surfaces M .
For example, elementary 1-form operator supported on 6 qubits on the surface of a single

12

Ug(M)
M

Baez and Huerta (2010)
Kapustin and Thorngren (2013)
Kapustin and Seiberg (2014)
Giaotto, Kapustin, Seiberg, and Willett (2015)
Yoshida (2015)
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Symmetry-protected self-correcting memory in 3D

– Simplest model:  Z2 x Z2 1-form symmetry 
– Bulk model is SPT ordered

– Bulk excitations are closed loops with tension
– Two types, on primal and dual lattices

– Boundary is SET ordered
– Electric and magnetic anyons, like the toric code
– Symmetry couples these anyons to bulk loops, 

and confines them
– Boundary theory should not exist!  Anomalous
– SET model only exists on boundary of SPT bulk

– SPT ordered model is thermally stable!
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show that the cluster state is in a nontrivial SPT phase with this symmetry. Formally, we
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eC

eCZflux



The University of Sydney Page 26

Self-correction, symmetries, and emergence
– 1-form symmetric SPT phases in 3D can be self-correcting quantum memories
– Higher-form symmetries appear necessary for thermal stability, but are very 

strong symmetry constraints
– 1-form symmetries can be enforced through error correction
– 1-form symmetries can be emergent

– Can they emerge in a model where all excitations are confined?

Gauge color code (Bombin, 2015, 2016)
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Quantum Memories – summary

=

eC

eCZflux
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Quantum Science @ Sydney

Stephen 
Bartlett

Michael 
Biercuk

Steven 
Flammia

David 
Reilly

Quantum 
Theory

Quantum 
Control

Quantum 
Nanoscience
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Quantum Science @ Sydney – come join us!
Quantum information theory group leaders:  
Stephen Bartlett, Steve Flammia, Arne Grimsmo, Isaac Kim

Postdoc positions now accepting applications:

‘Women of EQUS’ Deborah Jin Fellowship
http://equs.org

Sydney Quantum Academy offering PhD and 
postdoc positions starting 2020

http://equs.org/

