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Part 1 
Fast forward of adiabatic spin dynamics:  
Landau-Zener transition and generation 

of entangled states  

Part 2 
Fast forward of adiabatic quantum 

dynamics of  spin clusters:  
Geometry-dependent driving interactions 



What is the fast forward? 

This terminology means to reproduce a 
series of events or a history of matters in a 
shortened time scale, like a rapid projection 
of movie films on the screen.

Fast-forwarded evolution 
(shortened time scale)

Reference evolution 
(standard time scale)

time time



Fast forward (FF) can acquire reality with 
use of suitable protocols, e.g., by applying a 
well-designed external force, 
electromagnetic field, etc.



Theory and experiment of real fast forward 
(FF) is required wherever interesting 
dynamics is forced to be very slow, such as 
adiabatic quantum computation, adiabatic 
quantum annealing, etc.  

FF scheme reproduces the adiabatic 
dynamics in a shortened time scale, 
leaving neither residual oscillation nor 
disturbance.



Theory of FF of adiabatic dynamics is proposed by 
Masuda and Nakamura (2010~) and includes as a 
special limit the recent theory of shortcut-to-adiabaticity 
(STA) by Rice (2003, 2005), Berry (2009), Muga, et al 
(2010~), Jarzynski (2013), et al. 

References for the general scheme of fast forward: 
[1] S. Masuda and K. Nakamura, Phys. Rev. A 78, 062108 
(2008).  
[2] S. Masuda and K. Nakamura, Proc. R. Soc. A 466, 1135 
(2010).  
[3] S. Masuda and K. Nakamura, Phys. Rev. A 84, 043434 
(2011). 



References for application of  the fast forward scheme: 
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[2] K. Nakamura, A. Khujakulov, S. Avazbaev, and S. Masuda, 
Phys. Rev. A 95, 062108 (2017).  
[3] S. Masuda1, K. Nakamura, and M. Nakahara, 
New J. Phys. 20, 025008 (2018). 
[4] G. Babajanova, J. Matrasulov, and K. Nakamura,  
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In the present lectures, consider spin systems 
characterized by 

a slowly time-changing parameter R(t) 
such as the magnetic field, exchange interaction, etc. 

References related to the present lectures: 
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tant in the context of quantum computers. In Section

II we shall construct the scheme of fast forward of adia-

batic quantum spin dynamics and elucidate its relation

with the method of transitionless quantum driving. In

Section III, we shall apply the fast forward scheme to

two minimum models for quantum annealing and gener-

ation of entangled states, and obtain a wide variety of

state-dependent counter-diabatic terms to guarantee the

accelerated entanglement dynamics. Section IV is de-

voted to summary and discussions. Appendix gives a list

of formal solutions for state-dependent counter-diabatic

terms in the model(B).

II. FAST-FORWARD OF ADIABATIC SPIN

DYNAMICS

Consider the Hamiltonian for the spin systems to

be characterized by the slowly time-changing parameter

R(t) such as the exchange interaction, magnetic field,

etc. Then we can study the eigenvalue problem for the

time-independent Schrödinger equation :
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where R(t) = R0 + ✏t is the adiabatically-changing pa-

rameter with ✏ ⌧ 1. In Eq.(2.1), the quantum number n

for each eigenvalue and eigenstate is suppressed for sim-

plicity. Let us assume

 0(R(t)) =

0

BB@

C1(R)
...

C
N

(R)

1

CCA e�
i

~
R

t

0 E(R(t0))dt0ei⇠(t), (2.2)

to be a quasi-adiabatic state, i.e., adiabatically evolving

state. ⇠ is the adiabatic phase [14–16] defined by
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 0(R(t)) in Eq.(2.2), as it stands, cannot satisfy the

time-dependent Schrödinger equation (TDSE). To make

 0(R(t)) to satisfy the TDSE, we must regularize the

Hamiltonian as

Hreg
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(R(t)). (2.4)

Then TDSE becomes
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Here H̃
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is the n-th state-dependent regularization term

[2]. Substituting  0(R(t)) in Eq.(2.2) into the above

TDSE, we see in order of O(✏0) Eq.(2.1), i.e.,

H0 0 = E 0, (2.6)
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The fast forward state is defined by
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where ⇤(t) is an advanced time defined by

⇤(t) =

Z
t

0
↵(t0)dt0, (2.9)

with the standard time t. ↵(t) is a magnification time-

scale factor given by ↵(0) = 1, ↵(t) > 1 (0 < t < T
FF

)

and ↵(t) = 1 (t � T
FF

). We consider the fast forward

dynamics which reproduces the target state  0(T ) in a

shorter final time T
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defined by

T =

Z
T
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0
↵(t)dt. (2.10)

The explicit expression for ↵(t) in the fast-forward range
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) is typically given by [2] as :
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where ↵̄ is the mean value of ↵(t) and is given by
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(adiabatically-changing parameter)
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II we shall construct the scheme of fast forward of adia-

batic quantum spin dynamics and elucidate its relation

with the method of transitionless quantum driving. In

Section III, we shall apply the fast forward scheme to

several coupled (two-spin) systems, and obtain a variety

of state-dependent counter-diabatic terms to guarantee

the accelerated entanglement dynamics. Section IV is

devoted to summary and discussions. Appendices give

some technical details.
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For non-adiabatic processes,  0(R(t)) in Eq.(2.2) does

not satisfy the time-dependent Schrödinger equation

(TDSE) and in order to impose it as the solution of the

TDSE, the Hamiltonian must be regularized as
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which is the core equation of the present paper.
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We now take a strategy: a product of the mean value

↵̄ of an infinitely-large time-scaling factor ↵(t) and an

infinitesimally-small growth rate ✏ in the quasi-adiabatic

parameter should satisfy the constraint ↵̄ · ✏ = finite

Let’s forcibly consider the eigenvalue problem for  
the time-independent Schroedinger equation(TDSE)
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where ⇤(t) is an advanced time defined by
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scale factor given by ↵(0) = 1, ↵(t) > 1 (0 < t < T
FF

)

and ↵(t) = 1 (t � T
FF

). We consider the fast forward

dynamics which reproduces the target state  0(T ) in a

shorter final time T
FF

defined by

T =

Z
T

FF

0
↵(t)dt. (2.10)

The explicit expression for ↵(t) in the fast-forward range

(0  t  T
FF

) is typically given by [2] as :

↵(t) = ↵̄� (↵̄� 1) cos

✓
2⇡

T
FF

t

◆
, (2.11)
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Quasi-adiabatic wave function

(adiabatic phase)
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tant in the context of quantum computers. In Section

II we shall construct the scheme of fast forward of adia-

batic quantum spin dynamics and elucidate its relation

with the method of transitionless quantum driving. In

Section III, we shall apply the fast forward scheme to

two minimum models for quantum annealing and gener-

ation of entangled states, and obtain a wide variety of

state-dependent counter-diabatic terms to guarantee the

accelerated entanglement dynamics. Section IV is de-

voted to summary and discussions. Appendix gives a list

of formal solutions for state-dependent counter-diabatic

terms in the model(B).
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where ⇤(t) is an advanced time defined by
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batic quantum spin dynamics and elucidate its relation

with the method of transitionless quantum driving. In

Section III, we shall apply the fast forward scheme to

two minimum models for quantum annealing and gener-

ation of entangled states, and obtain a wide variety of
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voted to summary and discussions. Appendix gives a list
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 0(R(t)) in Eq.(2.2), as it stands, cannot satisfy the

time-dependent Schrödinger equation (TDSE). To make

 0(R(t)) to satisfy the TDSE, we must regularize the
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[2]. Substituting  0(R(t)) in Eq.(2.2) into the above
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H0 0 = E 0, (2.6)
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where ⇤(t) is an advanced time defined by

⇤(t) =
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t

0
↵(t0)dt0, (2.9)

with the standard time t. ↵(t) is a magnification time-

scale factor given by ↵(0) = 1, ↵(t) > 1 (0 < t < T
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)

and ↵(t) = 1 (t � T
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). We consider the fast forward

dynamics which reproduces the target state  0(T ) in a

shorter final time T
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defined by
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To make the quasi-adiabatic wave function satisfy 
TDSE, the regularization of the Hamiltonian is 
necessary:

Let’s expand Eq.(2.5) with respect to

2

II we shall construct the scheme of fast forward of adia-

batic quantum spin dynamics and elucidate its relation

with the method of transitionless quantum driving. In

Section III, we shall apply the fast forward scheme to

several coupled (two-spin) systems, and obtain a variety

of state-dependent counter-diabatic terms to guarantee

the accelerated entanglement dynamics. Section IV is

devoted to summary and discussions. Appendices give

some technical details.
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DYNAMICS
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be characterized by the slowly time-changing parameter

R(t) such as the exchange interaction, magnetic field,

etc. Then we can study the eigenvalue problem for the

time-independent Schrödinger equation :
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where R(t) = R0 + ✏t is the adiabatically-changing pa-

rameter with ✏ ⌧ 1. In Eq.(2.1), the quantum number n
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plicity. Let us assume
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to be a quasi-adiabatic state, i.e., adiabatically evolving

state. ⇠ is the adiabatic phase [14–16] defined by
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For non-adiabatic processes,  0(R(t)) in Eq.(2.2) does

not satisfy the time-dependent Schrödinger equation

(TDSE) and in order to impose it as the solution of the

TDSE, the Hamiltonian must be regularized as
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Then TDSE becomes
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which is the core equation of the present paper.
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where ⇤(t) is an advanced time defined by

⇤(t) =
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↵(t0)dt0, (2.9)

with the standard time t. ↵(t) is a magnification time-

scale factor given by ↵(0) = 1, ↵(t) > 1 (0 < t < T
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)

and ↵(t) = 1 (t � T
FF

). We consider the fast forward

dynamics which reproduces the target state  0(T ) in a

shorter final time T
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defined by
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The explicit expression for ↵(t) in the fast-forward range

(0  t  T
FF

) is typically given by [2] as :
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where ↵̄ is the mean value of ↵(t) and is given by ↵̄ =
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.

We now take a strategy: a product of the mean value

↵̄ of an infinitely-large time-scaling factor ↵(t) and an

infinitesimally-small growth rate ✏ in the quasi-adiabatic

parameter should satisfy the constraint ↵̄ · ✏ = finite
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ation of entangled states, and obtain a wide variety of
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voted to summary and discussions. Appendix gives a list

of formal solutions for state-dependent counter-diabatic

terms in the model(B).
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 0(R(t)) in Eq.(2.2), as it stands, cannot satisfy the
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shorter final time T
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defined by
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In order of O(1)

This is our core equation to determine 
the regularization terms

3

Here v(t) is a velocity function available from ↵(t) in the

asymptotic limit:
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H
FF

is the driving Hamiltonian and H̃
n

is the regular-

ization term obtained from Eq.(2.7) to generate the fast-

forward scheme in spin system.

There is a relation between H̃
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in Eq.(2.7) and

Demirplak-Rice-Berry’s counter-diabatic termH [5–7]. If
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summing over n, we have

H
X

n

|nihn| = i~
X

n

@

@t
|nihn|� i~

X

n

|nihn| @
@t

|nihn|.
(2.18)

Noting the completeness condition for the eigenstates :P
n

|nihn| = 1, we have

H = i~
X

n

✓
@

@t
|nihn|� |nihn| @

@t
|nihn|

◆
, (2.19)

which agrees with Demirplak-Rice-Berry’s formula.

Therefore v(t)H̃(R(⇤(t))) corresponds to the counter-

diabatic term. Using this correspondence, one may call

v(t)H̃
n

(R(⇤(t))) as a state-dependent counter-diabatic

term. Hereafter we shall be concerned with the fast for-

ward of adiabatic dynamics of one of the adiabatic states

(e.g., the ground state), and thereby the su�x n in H̃
n

will be suppressed.

Note: Demirplak-Rice-Berry(DRB)’s counter-

diabatic(CD) term is state-independent by nature,

and can also be reproduced by the inverse engineering

[26] based on the Lewis-Riesenfeld’s invariant theory [8].

Inspired by the works [12, 27] on a streamlined version

of the fast-forward method, Patra and Jarzynski [28]

proposed a framework for constructing STA from the

velocity and acceleration flow field which characterizes

the adiabatic evolution, providing compact expressions

for both CD term and fast-forward potentials. Since

the flow field is uniquely defined using each adiabatic

eigenstate, there appears only one state-dependent

CD term, which is not equivalent to DRB’s CD term,

although the equivalence will be recovered if two kind of

CD terms will be projected onto each of adiabatic states.

By contrast, our formalism here can generate plural

number of sate-dependent CD terms for each adiabatic

state, which can include a state-independent one.

Now we investigate a single spin system in our scheme,

and show the fast forward of adiabatic dynamics in

Landau-Zener (LZ) model [29, 30]. We consider a mag-

netic field :

B(t) =

0

B@
�

0

R(t)

1

CA , (2.20)

where � is a constant. The Hamiltonian is given by

H0(R(t)) =
1

2
� ·B =

1

2

 
R(t) �

� �R(t)

!
(2.21)

with the eigenvalues �± = ±
p
R

2+�2

2 and eigenstates

 ±
0 =

 
C±

1

C±
2

!
=

 
��/s±

R⌥
p
R

2+�2

s±

!
, (2.22)

where

s± ⌘
h
2
p

R2 +�2
⇣p

R2 +�2 ⌥R
⌘i1/2

. (2.23)

Now we choose one of the states with �+ and  +
0 , and

consider the adiabatic dynamics where R = R0+ ✏t. The

adiabatically evolving state is :

 0(t) =

 
� �

s+

R�
p
R

2+�2

s+

!
e�

i

~
R

t

0

p
R

2+�2

2 dt

0
e⇠(t). (2.24)

Noting that H̃
ij

is traceless (H̃11 = - H̃22) and Hermitian

(H̃⇤
21 =H̃12), Eq.(2.7) constitutes a rank = 2 linear alge-

braic equation for two unknowns (H̃11 and H̃12). With



Quasi-adiabatic function and TDSE  
under the regularized Hamiltonian are characterized 
by a slow time scale. However,  they work well not 
only for short time but also for any long time. 

Our practical interest lies in their long-time 
(T~O(1/\epsilon)) behaviors where 
the adiabatic parameter value R(t) shows a 
recognizable change.
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tant in the context of quantum computers. In Section

II we shall construct the scheme of fast forward of adia-

batic quantum spin dynamics and elucidate its relation

with the method of transitionless quantum driving. In

Section III, we shall apply the fast forward scheme to

two minimum models for quantum annealing and gener-

ation of entangled states, and obtain a wide variety of

state-dependent counter-diabatic terms to guarantee the

accelerated entanglement dynamics. Section IV is de-

voted to summary and discussions. Appendix gives a list

of formal solutions for state-dependent counter-diabatic

terms in the model(B).

II. FAST-FORWARD OF ADIABATIC SPIN

DYNAMICS

Consider the Hamiltonian for the spin systems to

be characterized by the slowly time-changing parameter

R(t) such as the exchange interaction, magnetic field,

etc. Then we can study the eigenvalue problem for the

time-independent Schrödinger equation :

H0(R)

0

BB@

C1(R)
...

C
N

(R)

1

CCA = E(R)

0

BB@

C1(R)
...

C
N

(R)

1

CCA , (2.1)

where R(t) = R0 + ✏t is the adiabatically-changing pa-

rameter with ✏ ⌧ 1. In Eq.(2.1), the quantum number n

for each eigenvalue and eigenstate is suppressed for sim-

plicity. Let us assume

 0(R(t)) =

0

BB@

C1(R)
...

C
N

(R)

1

CCA e�
i

~
R

t

0 E(R(t0))dt0ei⇠(t), (2.2)

to be a quasi-adiabatic state, i.e., adiabatically evolving

state. ⇠ is the adiabatic phase [14–16] defined by

⇠(t) = i

Z
t

0
dt0
⇣
C⇤

1
@C1

@t
+ ...+ C⇤

N

@C
N

@t

⌘
(2.3)

= i✏

Z
t

0
dt0
⇣
C⇤

1
@C1

@R
+ ...+ C⇤

N

@C
N

@R

⌘
.

 0(R(t)) in Eq.(2.2), as it stands, cannot satisfy the

time-dependent Schrödinger equation (TDSE). To make

 0(R(t)) to satisfy the TDSE, we must regularize the

Hamiltonian as

Hreg

0 (R(t)) = H0(R(t)) + ✏H̃
n

(R(t)). (2.4)

Then TDSE becomes

i~ @

@t
 0(R(t)) = (H0 + ✏H̃

n

) 0(R(t)). (2.5)

Here H̃
n

is the n-th state-dependent regularization term

[2]. Substituting  0(R(t)) in Eq.(2.2) into the above

TDSE, we see in order of O(✏0) Eq.(2.1), i.e.,

H0 0 = E 0, (2.6)

and in order of O(✏1)

H̃
n

0

BB@

C1(R)
...

C
N

(R)

1

CCA = i~

0

BB@

@C1(R)
@R

...
@C

N

(R)
@R

1

CCA�i~
 

NX

j=1

C⇤
j

@C
j

@R

!
0

BB@

C1(R)
...

C
N

(R)

1

CCA .

(2.7)

The fast forward state is defined by

 
FF

(t) =

0

BB@

C1(R(⇤(t)))
...

C
N

(R(⇤(t)))

1

CCA e�
i

~
R

t

0 E((R(⇤(t0))))dt0ei⇠((R(⇤(t))))

(2.8)

where ⇤(t) is an advanced time defined by

⇤(t) =

Z
t

0
↵(t0)dt0, (2.9)

with the standard time t. ↵(t) is a magnification time-

scale factor given by ↵(0) = 1, ↵(t) > 1 (0 < t < T
FF

)

and ↵(t) = 1 (t � T
FF

). We consider the fast forward

dynamics which reproduces the target state  0(T ) in a

shorter final time T
FF

defined by

T =

Z
T

FF

0
↵(t)dt. (2.10)

The explicit expression for ↵(t) in the fast-forward range

(0  t  T
FF

) is typically given by [2] as :

↵(t) = ↵̄� (↵̄� 1) cos

✓
2⇡

T
FF

t

◆
, (2.11)

where ↵̄ is the mean value of ↵(t) and is given by

↵̄ = T/T
FF

. By taking the time derivative of  
FF

in

Eq.(2.8), and using the relation

@ 0(R(⇤(t)))

@t
= ↵✏

@ 0

@R
(2.12)

together with Eqs.(2.1) and (2.7), we have

i~@ FF

@t
=
⇣
H0(R(⇤(t))) + v(t)H̃

n

(R(⇤(t)))
⌘
 

FF

⌘ H
FF

 
FF

. (2.13)

Therefore we consider fast forwarding with 
use of a large time-scaling factor:
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a transverse field [22–25] and the related model [26], which
showed the complicated nonlocal multibody CD terms that
are hard to achieve in experiment. While a variational method
to generate approximate local CD protocols [11,12] is being
cultivated, it is timely to sharpen the fast-forward approach
by showing a guiding principle to manage spin clusters with
various geometries on the basis of the proposed formula in
[16].

In this paper the fast-forward scheme of adiabatic dynam-
ics is applied to regular spin clusters of various geometries
with the number of spins N up to 4, i.e., regular triangle and
open linear chains for N = 3 spins and triangular pyramid,
square, primary star graph, and open linear chains for N = 4
spins. (Note that the geometry is irrelevant for systems with
N = 1 and 2 spins.) Choosing the Hamiltonian for a transverse
Ising model as a reference, we will reveal the nature of
driving interactions. In Sec. II we give a brief summary of
the fast-forward scheme of adiabatic quantum spin dynamics.
In Sec. III we propose a candidate regularization Hamiltonian
consisting of geometry-dependent pairwise interactions and
a universal three-body interaction and describe a method of
solving the linear algebraic equation for regularization terms.
Sections IV and V are devoted to the analysis of spin clusters
of various geometries with N = 3 and N = 4, respectively.
Section VI provides a summary and a discussion of the
results. The Appendix gives matrices for some regularization
Hamiltonians.

II. FAST-FORWARD SCHEME OF ADIABATIC
SPIN DYNAMICS

For self-containedness, we sketch the fast-forward scheme
of adiabatic spin dynamics [16]. Our strategy is as follows.
(i) A given original (reference) Hamiltonian H0 is assumed
to change adiabatically and to generate a stationary state !0,
which is an eigenstate of the time-independent Schrödinger
equation with the instantaneous Hamiltonian. Then H0 is
regularized so that !0 should satisfy the time-dependent
Schrödinger equation (TDSE). (ii) Taking !0 as a reference
state, we will rescale time in the TDSE with the use of the
scaling factor α(t ), where the mean value ᾱ of the infinitely
large time-scaling factor α(t ) will be chosen to compensate
for the infinitesimally small growth rate ϵ of the quasiadi-
abatic parameter and to satisfy the condition that ᾱ × ϵ be
finite.

Consider the Hamiltonian for spin systems to be charac-
terized by a slowly-time-changing parameter R(t ) such as the
exchange interaction, magnetic field, etc. Then we can study
the eigenvalue problem for the time-independent Schrödinger
equation

H0(R)C(n)(R) = En(R)C(n)(R), (2.1)

with

C(n)(R) =

⎛

⎜⎝
C(n)

1 (R)
...

C(n)
N (R)

⎞

⎟⎠, (2.2)

where

R ≡ R(t ) = R0 + ϵt (2.3)

is the adiabatically changing parameter with ϵ ≪ 1. In
Eq. (2.1), n stands for the quantum number for each eigen-
value and eigenstate. Let us assume that

! (n)
0 (R(t )) = C(n)(R(t )) exp

(
− i

h̄

∫ t

0
En(R(t ′))dt ′

)
eiξn (R(t ))

(2.4)
is a quasiadiabatic state, i.e., adiabatically evolving state,
where ξn is the adiabatic phase

ξn(R(t )) = i
∫ t

0
dt ′C(n)†∂t C(n) = iϵ

∫ t

0
dt ′C(n)†∂RC(n).

(2.5)

The ! (n)
0 (R(t )) in Eq. (2.4) is not a solution of the TDSE.

To make it satisfy the TDSE, we must regularize the Hamilto-
nian as

H reg
0 (R(t )) = H0(R(t )) + ϵH̃n(R(t )). (2.6)

Then the TDSE becomes

ih̄
∂

∂t
! (n)

0 (R(t )) = (H0 + ϵH̃n)! (n)
0 (R(t )). (2.7)

Here H̃n is the nth state-dependent regularization term. Sub-
stituting ! (n)

0 (R(t )) in Eq. (2.4) into the above TDSE, we see
the eigenvalue problem in Eq. (2.1) of O(ϵ0) and the algebraic
equation for H̃n,

H̃nC(n)(R) = ih̄∂RC(n)(R) − ih̄(C(n)†∂RC(n) )C(n)(R), (2.8)

of O(ϵ1). Equation (2.8) is the core of the present study.
The state (2.4) and TDSE (2.7) are working on a very slow
timescale. We will modify them so that they can work on a
laboratory timescale.

With time t rescaled by the advanced time &(t ), the fast-
forward state is introduced as

! (n)
FF (t ) ≡ ! (n)

0 (R(&(t )))

= C(n)(R(&(t ))) exp
(

− i
h̄

∫ t

0
En(R(&(t ′)))dt ′

)

× eiξn (R(&(t ))), (2.9)

where &(t ) is defined by

&(t ) =
∫ t

0
α(t ′)dt ′, (2.10)

with the standard time t . Here α(t ) is an arbitrary magni-
fication timescale factor which satisfies α(0) = 1, α(t ) > 1
(0 < t < TFF), and α(t ) = 1 (t ! TFF). For a long final time
T in the original adiabatic dynamics, we can consider the
fast-forward dynamics with a new time variable which repro-
duces the target state ! (n)

0 (R(T )) in a shorter final time TFF
defined by

T =
∫ TFF

0
α(t )dt . (2.11)

The simplest expression for α(t ) in the fast-forward range
(0 " t " TFF) is given in [8] as

α(t ) = ᾱ − (ᾱ − 1) cos
(

2π

TFF
t
)

, (2.12)

where ᾱ is the mean value of α(t ) and is given by ᾱ = T/TFF.
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= t   in case of no scaling
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tant in the context of quantum computers. In Section

II we shall construct the scheme of fast forward of adia-

batic quantum spin dynamics and elucidate its relation

with the method of transitionless quantum driving. In

Section III, we shall apply the fast forward scheme to

two minimum models for quantum annealing and gener-

ation of entangled states, and obtain a wide variety of

state-dependent counter-diabatic terms to guarantee the

accelerated entanglement dynamics. Section IV is de-

voted to summary and discussions. Appendix gives a list

of formal solutions for state-dependent counter-diabatic

terms in the model(B).

II. FAST-FORWARD OF ADIABATIC SPIN

DYNAMICS

Consider the Hamiltonian for the spin systems to

be characterized by the slowly time-changing parameter

R(t) such as the exchange interaction, magnetic field,

etc. Then we can study the eigenvalue problem for the

time-independent Schrödinger equation :

H0(R)

0

BB@

C1(R)
...

C
N

(R)

1

CCA = E(R)

0

BB@

C1(R)
...

C
N

(R)

1

CCA , (2.1)

where R(t) = R0 + ✏t is the adiabatically-changing pa-

rameter with ✏ ⌧ 1. In Eq.(2.1), the quantum number n

for each eigenvalue and eigenstate is suppressed for sim-

plicity. Let us assume

 0(R(t)) =

0

BB@

C1(R)
...

C
N

(R)

1

CCA e�
i

~
R

t

0 E(R(t0))dt0ei⇠(t), (2.2)

to be a quasi-adiabatic state, i.e., adiabatically evolving

state. ⇠ is the adiabatic phase [14–16] defined by

⇠(t) = i

Z
t

0
dt0
⇣
C⇤

1
@C1

@t
+ ...+ C⇤

N

@C
N

@t

⌘
(2.3)

= i✏

Z
t

0
dt0
⇣
C⇤

1
@C1

@R
+ ...+ C⇤

N

@C
N

@R

⌘
.

 0(R(t)) in Eq.(2.2), as it stands, cannot satisfy the

time-dependent Schrödinger equation (TDSE). To make

 0(R(t)) to satisfy the TDSE, we must regularize the

Hamiltonian as

Hreg

0 (R(t)) = H0(R(t)) + ✏H̃
n

(R(t)). (2.4)

Then TDSE becomes

i~ @

@t
 0(R(t)) = (H0 + ✏H̃

n

) 0(R(t)). (2.5)

Here H̃
n

is the n-th state-dependent regularization term

[2]. Substituting  0(R(t)) in Eq.(2.2) into the above

TDSE, we see in order of O(✏0) Eq.(2.1), i.e.,

H0 0 = E 0, (2.6)

and in order of O(✏1)

H̃
n

0

BB@

C1(R)
...

C
N

(R)

1

CCA = i~

0

BB@
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(2.7)

The fast forward state is defined by

 
FF

(t) =

0

BB@

C1(R(⇤(t)))
...

C
N

(R(⇤(t)))

1

CCA e�
i

~
R

t

0 E((R(⇤(t0))))dt0ei⇠((R(⇤(t))))

(2.8)

where ⇤(t) is an advanced time defined by

⇤(t) =

Z
t

0
↵(t0)dt0, (2.9)

with the standard time t. ↵(t) is a magnification time-

scale factor given by ↵(0) = 1, ↵(t) > 1 (0 < t < T
FF

)

and ↵(t) = 1 (t � T
FF

). We consider the fast forward

dynamics which reproduces the target state  0(T ) in a

shorter final time T
FF

defined by

T =

Z
T

FF

0
↵(t)dt. (2.10)

The explicit expression for ↵(t) in the fast-forward range

(0  t  T
FF

) is typically given by [2] as :

↵(t) = ↵̄� (↵̄� 1) cos

✓
2⇡

T
FF

t

◆
, (2.11)

where ↵̄ is the mean value of ↵(t) and is given by

↵̄ = T/T
FF

. By taking the time derivative of  
FF

in

Eq.(2.8), and using the relation

@ 0(R(⇤(t)))

@t
= ↵✏

@ 0

@R
(2.12)

together with Eqs.(2.1) and (2.7), we have

i~@ FF
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=
⇣
H0(R(⇤(t))) + v(t)H̃

n

(R(⇤(t)))
⌘
 

FF
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FF
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. (2.13)
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tant in the context of quantum computers. In Section

II we shall construct the scheme of fast forward of adia-

batic quantum spin dynamics and elucidate its relation

with the method of transitionless quantum driving. In

Section III, we shall apply the fast forward scheme to

two minimum models for quantum annealing and gener-

ation of entangled states, and obtain a wide variety of

state-dependent counter-diabatic terms to guarantee the

accelerated entanglement dynamics. Section IV is de-

voted to summary and discussions. Appendix gives a list

of formal solutions for state-dependent counter-diabatic

terms in the model(B).

II. FAST-FORWARD OF ADIABATIC SPIN

DYNAMICS

Consider the Hamiltonian for the spin systems to

be characterized by the slowly time-changing parameter

R(t) such as the exchange interaction, magnetic field,

etc. Then we can study the eigenvalue problem for the

time-independent Schrödinger equation :
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CCA = E(R)
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1

CCA , (2.1)

where R(t) = R0 + ✏t is the adiabatically-changing pa-

rameter with ✏ ⌧ 1. In Eq.(2.1), the quantum number n

for each eigenvalue and eigenstate is suppressed for sim-

plicity. Let us assume

 0(R(t)) =

0

BB@

C1(R)
...
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(R)

1

CCA e�
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t

0 E(R(t0))dt0ei⇠(t), (2.2)

to be a quasi-adiabatic state, i.e., adiabatically evolving

state. ⇠ is the adiabatic phase [14–16] defined by

⇠(t) = i
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0
dt0
⇣
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.

 0(R(t)) in Eq.(2.2), as it stands, cannot satisfy the

time-dependent Schrödinger equation (TDSE). To make

 0(R(t)) to satisfy the TDSE, we must regularize the

Hamiltonian as

Hreg

0 (R(t)) = H0(R(t)) + ✏H̃
n

(R(t)). (2.4)

Then TDSE becomes
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 0(R(t)) = (H0 + ✏H̃

n

) 0(R(t)). (2.5)

Here H̃
n

is the n-th state-dependent regularization term

[2]. Substituting  0(R(t)) in Eq.(2.2) into the above

TDSE, we see in order of O(✏0) Eq.(2.1), i.e.,

H0 0 = E 0, (2.6)

and in order of O(✏1)
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The fast forward state is defined by
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where ⇤(t) is an advanced time defined by

⇤(t) =

Z
t

0
↵(t0)dt0, (2.9)

with the standard time t. ↵(t) is a magnification time-

scale factor given by ↵(0) = 1, ↵(t) > 1 (0 < t < T
FF

)

and ↵(t) = 1 (t � T
FF

). We consider the fast forward

dynamics which reproduces the target state  0(T ) in a

shorter final time T
FF

defined by

T =

Z
T

FF

0
↵(t)dt. (2.10)

The explicit expression for ↵(t) in the fast-forward range

(0  t  T
FF

) is typically given by [2] as :

↵(t) = ↵̄� (↵̄� 1) cos
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where ↵̄ is the mean value of ↵(t) and is given by

↵̄ = T/T
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. By taking the time derivative of  
FF

in

Eq.(2.8), and using the relation
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together with Eqs.(2.1) and (2.7), we have
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time scale: t                         time scale: αt

                                       (α>>1)

Original idea

T(~O(1/\epsilon)): a very long time for each event (adiabatic 
spin inversion, LZ transition, adiabatic transition from 
product to entangled states, etc) to be completed.

    

€ 

α(t ) = (1−α )cos
2π

T /α 
t

% 

& 
' 

( 

) 
* +α 

Typical scaling:

Any scaling function α(t) is acceptable so long as α(0)=α(TF)=1.
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tant in the context of quantum computers. In Section

II we shall construct the scheme of fast forward of adia-

batic quantum spin dynamics and elucidate its relation

with the method of transitionless quantum driving. In

Section III, we shall apply the fast forward scheme to

two minimum models for quantum annealing and gener-

ation of entangled states, and obtain a wide variety of

state-dependent counter-diabatic terms to guarantee the

accelerated entanglement dynamics. Section IV is de-

voted to summary and discussions. Appendix gives a list

of formal solutions for state-dependent counter-diabatic

terms in the model(B).

II. FAST-FORWARD OF ADIABATIC SPIN

DYNAMICS

Consider the Hamiltonian for the spin systems to

be characterized by the slowly time-changing parameter

R(t) such as the exchange interaction, magnetic field,

etc. Then we can study the eigenvalue problem for the

time-independent Schrödinger equation :

H0(R)

0

BB@

C1(R)
...

C
N

(R)

1

CCA = E(R)

0

BB@

C1(R)
...

C
N

(R)

1

CCA , (2.1)

where R(t) = R0 + ✏t is the adiabatically-changing pa-

rameter with ✏ ⌧ 1. In Eq.(2.1), the quantum number n

for each eigenvalue and eigenstate is suppressed for sim-

plicity. Let us assume

 0(R(t)) =

0

BB@

C1(R)
...

C
N

(R)

1

CCA e�
i

~
R

t

0 E(R(t0))dt0ei⇠(t), (2.2)

to be a quasi-adiabatic state, i.e., adiabatically evolving

state. ⇠ is the adiabatic phase [14–16] defined by

⇠(t) = i

Z
t

0
dt0
⇣
C⇤

1
@C1

@t
+ ...+ C⇤

N

@C
N

@t

⌘
(2.3)

= i✏

Z
t

0
dt0
⇣
C⇤

1
@C1

@R
+ ...+ C⇤

N

@C
N

@R

⌘
.

 0(R(t)) in Eq.(2.2), as it stands, cannot satisfy the

time-dependent Schrödinger equation (TDSE). To make

 0(R(t)) to satisfy the TDSE, we must regularize the

Hamiltonian as

Hreg

0 (R(t)) = H0(R(t)) + ✏H̃
n

(R(t)). (2.4)

Then TDSE becomes

i~ @

@t
 0(R(t)) = (H0 + ✏H̃

n

) 0(R(t)). (2.5)

Here H̃
n

is the n-th state-dependent regularization term

[2]. Substituting  0(R(t)) in Eq.(2.2) into the above

TDSE, we see in order of O(✏0) Eq.(2.1), i.e.,

H0 0 = E 0, (2.6)

and in order of O(✏1)

H̃
n

0

BB@

C1(R)
...

C
N

(R)

1

CCA = i~

0

BB@

@C1(R)
@R

...
@C

N

(R)
@R

1

CCA�i~
 

NX

j=1

C⇤
j

@C
j

@R

!
0

BB@

C1(R)
...

C
N

(R)

1

CCA .

(2.7)

The fast forward state is defined by

 
FF

(t) =

0

BB@

C1(R(⇤(t)))
...

C
N

(R(⇤(t)))

1

CCA e�
i

~
R

t

0 E((R(⇤(t0))))dt0ei⇠((R(⇤(t))))

(2.8)

where ⇤(t) is an advanced time defined by

⇤(t) =

Z
t

0
↵(t0)dt0, (2.9)

with the standard time t. ↵(t) is a magnification time-

scale factor given by ↵(0) = 1, ↵(t) > 1 (0 < t < T
FF

)

and ↵(t) = 1 (t � T
FF

). We consider the fast forward

dynamics which reproduces the target state  0(T ) in a

shorter final time T
FF

defined by

T =

Z
T

FF

0
↵(t)dt. (2.10)

The explicit expression for ↵(t) in the fast-forward range

(0  t  T
FF

) is typically given by [2] as :

↵(t) = ↵̄� (↵̄� 1) cos

✓
2⇡

T
FF

t

◆
, (2.11)

where ↵̄ is the mean value of ↵(t) and is given by

↵̄ = T/T
FF

. By taking the time derivative of  
FF

in

Eq.(2.8), and using the relation

@ 0(R(⇤(t)))

@t
= ↵✏

@ 0

@R
(2.12)

together with Eqs.(2.1) and (2.7), we have

i~@ FF

@t
=
⇣
H0(R(⇤(t))) + v(t)H̃

n

(R(⇤(t)))
⌘
 

FF

⌘ H
FF

 
FF

. (2.13)

We can show that  FF state satisfies TDSE 
under the FF Hamiltonian:

Detailed proof will be given in Part 2.
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Here v(t) is a velocity function available from ↵(t) in the

asymptotic limit:

v(t) = lim
✏!0,↵!1

✏↵(t) (2.14)

= v̄

✓
1� cos

2⇡

T
FF

t

◆
,

where v̄ = lim
✏!0,↵!1 ✏↵̄(= finite) is the mean of v(t).

Consequently

R(⇤(t)) = R0 + lim
✏!0,↵̄!1

"⇤(t)

= R0 +

Z
t

0
v(t0)dt0

= R0 + v̄


t� T

FF

2⇡
sin

✓
2⇡

T
FF

t

◆�
,

for 0  t  T
FF

. (2.15)

H
FF

is the driving Hamiltonian and H̃
n

is the regular-

ization term obtained from Eq.(2.7) to generate the fast-

forward scheme in spin system.

There is a relation between H̃
n

in Eq.(2.7) and

Demirplak-Rice-Berry’s counter-diabatic termH [5–7]. If

there is an n-independent regularization term H̃ among

{H̃
n

}, we define H ⌘ v(t)H̃(R(⇤(t))) with use of v(t) =
@R(⇤(t))

@t

. Then Eq.(2.7) becomes

H 0 = i~ @

@t
 0 � i~

NX

j=1

C⇤
j

@C
j

@t
 0, (2.16)

which can be rewritten as

H|ni = i~ @

@t
|ni � i~|nihn| @

@t
|ni, (2.17)

where |ni means the n-th eigenstate of the Hamiltonian

in Eq.(2.1). Operating both side of Eq.(2.17) on hn|, and
summing over n, we have

H
X

n

|nihn| = i~
X

n

@

@t
|nihn|� i~

X

n

|nihn| @
@t

|nihn|.
(2.18)

Noting the completeness condition for the eigenstates :P
n

|nihn| = 1, we have

H = i~
X

n

✓
@

@t
|nihn|� |nihn| @

@t
|nihn|

◆
, (2.19)

which agrees with Demirplak-Rice-Berry’s formula.

Therefore v(t)H̃(R(⇤(t))) corresponds to the counter-

diabatic term. Using this correspondence, one may call

v(t)H̃
n

(R(⇤(t))) as a state-dependent counter-diabatic

term. Hereafter we shall be concerned with the fast for-

ward of adiabatic dynamics of one of the adiabatic states

(e.g., the ground state), and thereby the su�x n in H̃
n

will be suppressed.

Note: Demirplak-Rice-Berry(DRB)’s counter-

diabatic(CD) term is state-independent by nature,

and can also be reproduced by the inverse engineering

[26] based on the Lewis-Riesenfeld’s invariant theory [8].

Inspired by the works [12, 27] on a streamlined version

of the fast-forward method, Patra and Jarzynski [28]

proposed a framework for constructing STA from the

velocity and acceleration flow field which characterizes

the adiabatic evolution, providing compact expressions

for both CD term and fast-forward potentials. Since

the flow field is uniquely defined using each adiabatic

eigenstate, there appears only one state-dependent

CD term, which is not equivalent to DRB’s CD term,

although the equivalence will be recovered if two kind of

CD terms will be projected onto each of adiabatic states.

By contrast, our formalism here can generate plural

number of sate-dependent CD terms for each adiabatic

state, which can include a state-independent one.

Now we investigate a single spin system in our scheme,

and show the fast forward of adiabatic dynamics in

Landau-Zener (LZ) model [29, 30]. We consider a mag-

netic field :

B(t) =

0

B@
�

0

R(t)

1

CA , (2.20)

where � is a constant. The Hamiltonian is given by

H0(R(t)) =
1

2
� ·B =

1

2

 
R(t) �

� �R(t)

!
(2.21)

with the eigenvalues �± = ±
p
R

2+�2

2 and eigenstates

 ±
0 =

 
C±

1

C±
2

!
=

 
��/s±

R⌥
p
R

2+�2

s±

!
, (2.22)

where

s± ⌘
h
2
p

R2 +�2
⇣p

R2 +�2 ⌥R
⌘i1/2

. (2.23)

Now we choose one of the states with �+ and  +
0 , and

consider the adiabatic dynamics where R = R0+ ✏t. The

adiabatically evolving state is :

 0(t) =

 
� �

s+

R�
p
R

2+�2

s+

!
e�

i

~
R

t

0

p
R

2+�2

2 dt

0
e⇠(t). (2.24)

Noting that H̃
ij

is traceless (H̃11 = - H̃22) and Hermitian

(H̃⇤
21 =H̃12), Eq.(2.7) constitutes a rank = 2 linear alge-

braic equation for two unknowns (H̃11 and H̃12). With

3

Here v(t) is a velocity function available from ↵(t) in the

asymptotic limit:

v(t) = lim
✏!0,↵!1

✏↵(t) (2.14)

= v̄

✓
1� cos

2⇡

T
FF

t

◆
,

where v̄ = lim
✏!0,↵!1 ✏↵̄(= finite) is the mean of v(t).

Consequently

R(⇤(t)) = R0 + lim
✏!0,↵̄!1

"⇤(t)

= R0 +

Z
t

0
v(t0)dt0

= R0 + v̄


t� T

FF

2⇡
sin

✓
2⇡

T
FF

t

◆�
,

for 0  t  T
FF

. (2.15)

H
FF

is the driving Hamiltonian and H̃
n

is the regular-

ization term obtained from Eq.(2.7) to generate the fast-

forward scheme in spin system.

There is a relation between H̃
n

in Eq.(2.7) and

Demirplak-Rice-Berry’s counter-diabatic termH [5–7]. If

there is an n-independent regularization term H̃ among

{H̃
n

}, we define H ⌘ v(t)H̃(R(⇤(t))) with use of v(t) =
@R(⇤(t))

@t

. Then Eq.(2.7) becomes

H 0 = i~ @

@t
 0 � i~

NX

j=1

C⇤
j

@C
j

@t
 0, (2.16)

which can be rewritten as

H|ni = i~ @

@t
|ni � i~|nihn| @

@t
|ni, (2.17)

where |ni means the n-th eigenstate of the Hamiltonian

in Eq.(2.1). Operating both side of Eq.(2.17) on hn|, and
summing over n, we have

H
X

n

|nihn| = i~
X

n

@

@t
|nihn|� i~

X

n

|nihn| @
@t

|nihn|.
(2.18)

Noting the completeness condition for the eigenstates :P
n

|nihn| = 1, we have

H = i~
X

n

✓
@

@t
|nihn|� |nihn| @

@t
|nihn|

◆
, (2.19)

which agrees with Demirplak-Rice-Berry’s formula.

Therefore v(t)H̃(R(⇤(t))) corresponds to the counter-

diabatic term. Using this correspondence, one may call

v(t)H̃
n

(R(⇤(t))) as a state-dependent counter-diabatic

term. Hereafter we shall be concerned with the fast for-

ward of adiabatic dynamics of one of the adiabatic states

(e.g., the ground state), and thereby the su�x n in H̃
n

will be suppressed.

Note: Demirplak-Rice-Berry(DRB)’s counter-

diabatic(CD) term is state-independent by nature,

and can also be reproduced by the inverse engineering

[26] based on the Lewis-Riesenfeld’s invariant theory [8].

Inspired by the works [12, 27] on a streamlined version

of the fast-forward method, Patra and Jarzynski [28]

proposed a framework for constructing STA from the

velocity and acceleration flow field which characterizes

the adiabatic evolution, providing compact expressions

for both CD term and fast-forward potentials. Since

the flow field is uniquely defined using each adiabatic

eigenstate, there appears only one state-dependent

CD term, which is not equivalent to DRB’s CD term,

although the equivalence will be recovered if two kind of

CD terms will be projected onto each of adiabatic states.

By contrast, our formalism here can generate plural

number of sate-dependent CD terms for each adiabatic

state, which can include a state-independent one.

Now we investigate a single spin system in our scheme,

and show the fast forward of adiabatic dynamics in

Landau-Zener (LZ) model [29, 30]. We consider a mag-

netic field :

B(t) =

0

B@
�

0

R(t)

1

CA , (2.20)

where � is a constant. The Hamiltonian is given by

H0(R(t)) =
1

2
� ·B =

1

2

 
R(t) �

� �R(t)

!
(2.21)

with the eigenvalues �± = ±
p
R

2+�2

2 and eigenstates

 ±
0 =

 
C±

1

C±
2

!
=

 
��/s±

R⌥
p
R

2+�2

s±

!
, (2.22)

where

s± ⌘
h
2
p

R2 +�2
⇣p

R2 +�2 ⌥R
⌘i1/2

. (2.23)

Now we choose one of the states with �+ and  +
0 , and

consider the adiabatic dynamics where R = R0+ ✏t. The

adiabatically evolving state is :

 0(t) =

 
� �

s+

R�
p
R

2+�2

s+

!
e�

i

~
R

t

0

p
R

2+�2

2 dt

0
e⇠(t). (2.24)

Noting that H̃
ij

is traceless (H̃11 = - H̃22) and Hermitian

(H̃⇤
21 =H̃12), Eq.(2.7) constitutes a rank = 2 linear alge-

braic equation for two unknowns (H̃11 and H̃12). With
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Here v(t) is a velocity function available from ↵(t) in the

asymptotic limit:

v(t) = lim
✏!0,↵!1

✏↵(t) (2.14)

= v̄

✓
1� cos

2⇡

T
FF

t

◆
,

where v̄ = lim
✏!0,↵!1 ✏↵̄(= finite) is the mean of v(t).

Consequently

R(⇤(t)) = R0 + lim
✏!0,↵̄!1

"⇤(t)

= R0 +

Z
t

0
v(t0)dt0

= R0 + v̄


t� T

FF

2⇡
sin

✓
2⇡

T
FF

t

◆�
,

for 0  t  T
FF

. (2.15)

H
FF

is the driving Hamiltonian and H̃
n

is the regular-

ization term obtained from Eq.(2.7) to generate the fast-

forward scheme in spin system.

There is a relation between H̃
n

in Eq.(2.7) and

Demirplak-Rice-Berry’s counter-diabatic termH [5–7]. If

there is an n-independent regularization term H̃ among

{H̃
n

}, we define H ⌘ v(t)H̃(R(⇤(t))) with use of v(t) =
@R(⇤(t))

@t

. Then Eq.(2.7) becomes

H 0 = i~ @

@t
 0 � i~

NX

j=1

C⇤
j

@C
j

@t
 0, (2.16)

which can be rewritten as

H|ni = i~ @

@t
|ni � i~|nihn| @

@t
|ni, (2.17)

where |ni means the n-th eigenstate of the Hamiltonian

in Eq.(2.1). Operating both side of Eq.(2.17) on hn|, and
summing over n, we have

H
X

n

|nihn| = i~
X

n

@

@t
|nihn|� i~

X

n

|nihn| @
@t

|nihn|.
(2.18)

Noting the completeness condition for the eigenstates :P
n

|nihn| = 1, we have

H = i~
X

n

✓
@

@t
|nihn|� |nihn| @

@t
|nihn|

◆
, (2.19)

which agrees with Demirplak-Rice-Berry’s formula.

Therefore v(t)H̃(R(⇤(t))) corresponds to the counter-

diabatic term. Using this correspondence, one may call

v(t)H̃
n

(R(⇤(t))) as a state-dependent counter-diabatic

term. Hereafter we shall be concerned with the fast for-

ward of adiabatic dynamics of one of the adiabatic states

(e.g., the ground state), and thereby the su�x n in H̃
n

will be suppressed.

Note: Demirplak-Rice-Berry(DRB)’s counter-

diabatic(CD) term is state-independent by nature,

and can also be reproduced by the inverse engineering

[26] based on the Lewis-Riesenfeld’s invariant theory [8].

Inspired by the works [12, 27] on a streamlined version

of the fast-forward method, Patra and Jarzynski [28]

proposed a framework for constructing STA from the

velocity and acceleration flow field which characterizes

the adiabatic evolution, providing compact expressions

for both CD term and fast-forward potentials. Since

the flow field is uniquely defined using each adiabatic

eigenstate, there appears only one state-dependent

CD term, which is not equivalent to DRB’s CD term,

although the equivalence will be recovered if two kind of

CD terms will be projected onto each of adiabatic states.

By contrast, our formalism here can generate plural

number of sate-dependent CD terms for each adiabatic

state, which can include a state-independent one.

Now we investigate a single spin system in our scheme,

and show the fast forward of adiabatic dynamics in

Landau-Zener (LZ) model [29, 30]. We consider a mag-

netic field :

B(t) =

0

B@
�

0

R(t)

1

CA , (2.20)

where � is a constant. The Hamiltonian is given by

H0(R(t)) =
1

2
� ·B =

1

2

 
R(t) �

� �R(t)

!
(2.21)

with the eigenvalues �± = ±
p
R

2+�2

2 and eigenstates

 ±
0 =

 
C±

1

C±
2

!
=

 
��/s±

R⌥
p
R

2+�2

s±

!
, (2.22)

where

s± ⌘
h
2
p

R2 +�2
⇣p

R2 +�2 ⌥R
⌘i1/2

. (2.23)

Now we choose one of the states with �+ and  +
0 , and

consider the adiabatic dynamics where R = R0+ ✏t. The

adiabatically evolving state is :

 0(t) =

 
� �

s+

R�
p
R

2+�2

s+

!
e�

i

~
R

t

0

p
R

2+�2

2 dt

0
e⇠(t). (2.24)

Noting that H̃
ij

is traceless (H̃11 = - H̃22) and Hermitian

(H̃⇤
21 =H̃12), Eq.(2.7) constitutes a rank = 2 linear alge-

braic equation for two unknowns (H̃11 and H̃12). With
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FIG. 1: 2準位の交差

計算の便宜上、Fig.1のように状態 |1iが上から下に
交差する場合を考える。v > 0, ~ = 1として

i

d

dt

c1 = °vt

2

c1 + ∆c2, (1)

i

d

dt

c2 = ∆c1 +

vt

2

c2. (2)

(1),(2)の両辺を tで微分して (1),(2)を代入することで

d

2

dt

2
c1 + {(∆2 ° i

v

2

) +

1

4

v

2
t

2}c1 = 0, (3)

d

2

dt

2
c2 + {(∆2

+ i

v

2

) +

1

4

v

2
t

2}c2 = 0. (4)

z = i

p
ve

i

º
4
t, z

2
= °ivt

2 と変数変換して c1(t) ¥

w1(z), c2(t) ¥ w2(z)とおけば
d

2

dt

2
= °iv

d

2

dz

2

に注意して (3), (4)は

d

2

dz

2
w1 + (n +

1

2

° z

2

4

)w1 = 0, (5)

d

2

dz

2
w2 + (n° 1

2

° z

2

4

)w2 = 0, (6)

と変形できる。ただし、n = i(∆

2
/v) ¥ i±.

II. WEBER関数による解

(5)の解はWeber関数 D

n

(z), D

n

(°z), D°n°1(iz), D°n°1(°iz)で与えられる。ただし、
このうち２つが１次独立。実際、D

n

(z)が解であれば、残りの３つも解となることは代入
して直ちに確かめられる。これらの中から適当な初期条件を満足するものを選ぶ。そのた
めにWeber関数の |z|!1における漸近挙動を調べる。

1

1. NAKAMURA’S NOTE (DECEMBER 26, 2018)

P
LZ

= exp(�⇡�2

2v ) Dear all:
I find that the divergence in the regularization terms always appears so long as we start from J = 0

at t = 0 in case of N = 4 spin clusters. By contrast, in case of N = 3 spin clusters, we saw no such a
problem. In case of N = 4 spin clusters, the solutions for the regularization terms have denominators which
are vanishing for J = 0 at t = 0, leading to the divergence! However, the problem is not serious, and can be
resolved as follows.
Let’s now define: J = J0 +R(⇤(t)), and B

x

= B0 �R(⇤(t)) with R(⇤(t)) = v̄
h
t� TFF

2⇡ sin
⇣

2⇡
TFF

t
⌘i

. Here

B0 = 10, v̄ = 100, T
FF

= 0.1. We shall choose J0 = 1, although we chose J0 = 0 in case of N = 3 spin
clusters.
As usual, we should compute C

j

, @
R

C
j

with use of the analytic expression for the ground-sate eigenvectors.
The simplest expressions for the initial values such as C1 = C2 = · · · = 1

4 are now useless!
· · · · · ·
To Iwan: I hope you are fine despite the tsunami disaster in Selat Sunda. With use of the new definition

for J above, please make eps files for the time dependence of probability amplitudes and that of the v(t)-
multiplied regularization terms for triangular pyramid, square and primary star graph. You may employ
J0 = 0.1, if the resultant figures will be more remarkable.
· · · · · ·
To Sanat: The divergence of the probability amplitudes for J = 0 turns out not a problem, as explained

above. Please now solve the linear algebraic equation in Eq.(5.21) for the open linear 4 spins, and obtain

the expressions for W̃1, W̃2, W̃3, W̃4 and Q̃. Please write the resultant expressions in Tex text (with use of
my latest Tex text) together with pdf text.
With best wishes,
Katsuhiro Nakamura
P.S. The problem of the divergence in the regularization terms is not new, and already appeared in case

of N = 2 spins (see Table 1 of Phys. Rev. A96, 052106 (2017) by Iwan et a) where no explicit numerical
calculation of the time dependence of the regularization terms was done.
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We develop a fast-forward scheme of the adiabatic spin dynamics of quantum entangled states. We settle the
quasiadiabatic dynamics by adding the regularization terms to the original Hamiltonian and then accelerate it with
the use of a large time-scaling factor. Assuming the experimentally realizable candidate Hamiltonian consisting
of the exchange interactions and magnetic field, we solve the regularization terms. These terms, multiplied by the
velocity function, give rise to the state-dependent counterdiabatic terms. The scheme needs neither knowledge
of full spectral properties of the system nor solving the initial- and boundary-value problem. Our fast forward
Hamiltonian generates a variety of state-dependent counterdiabatic terms for each of adiabatic states, which can
include the state-independent one. We highlight this fact by using minimum (two-spin) models for a simple
transverse Ising model, quantum annealing, and generation of entanglement.

DOI: 10.1103/PhysRevA.96.052106

I. INTRODUCTION

A shorter time in manufacturing products (e.g., electronics,
automotives, plants, etc.) is becoming an important factor in
nanotechnology. If we try to fabricate a massive amount of such
a nanoscale structure, we should shorten the dynamics of each
atom or molecule to get its desired target states in shorter time.
In designing quantum computers, the coherence of systems
is degraded by their interaction with the environment and
therefore the acceleration of adiabatic quantum dynamics is
highly desirable. A theory to accelerate quantum dynamics
was proposed by Masuda and Nakamura [1] with use of
additional phase and driving potential. This theory aimed to
accelerate a known quantum evolution and to obtain the desired
target state on a shorter time scale, by fast forwarding the
standard quantum dynamics. The theory of fast forward can
be developed to accelerate the adiabatic quantum dynamics
[2–4] and constitutes one of the promising means to a shortcut
to adiabaticity (STA) [5–11]. The relationship between the
fast forward and the STA is nowadays clear [4] (see also
[12,13]). The adiabaticity occurs when the external parameter
of the Hamiltonian is very slowly changed. The quantum
adiabatic theorem [14–18] states that if the system is initially
in an eigenstate of the instantaneous Hamiltonian, it remains
so during the adiabatic process. Although the theory of fast
forward of the adiabatic quantum dynamics has been well
developed for the orbital dynamics, the corresponding study
of quantum spin systems remains at an elementary level [19].
The scheme of fast forward of the adiabatic spin dynamics
will be important when the number of spins is plural and the
quantum entanglement [20] is operative.

In this paper we develop a fast-forward scheme of the
adiabatic spin dynamics of quantum entangled states. We
apply the scheme to two-spin systems described by a simple
transverse Ising model [21], a minimum model for quantum
annealing [22,23], and a model for the generation of entan-
glement [24,25], all of which are extremely important in the
context of quantum computers. In Sec. II we construct the

scheme of fast forward of the adiabatic quantum spin dynamics
and elucidate its relation with the method of transitionless
quantum driving. In Sec. III we apply the fast-forward scheme
to several coupled (two-spin) systems and obtain a variety
of state-dependent counterdiabatic terms to guarantee the
accelerated entanglement dynamics. Section IV is devoted to a
summary and discussion. The Appendix gives some technical
details.

II. FAST FORWARD OF THE ADIABATIC SPIN DYNAMICS

Consider the Hamiltonian for the spin systems to be
characterized by the slowly time-changing parameter R(t)
such as the exchange interaction, magnetic field, etc. Then
we can study the eigenvalue problem for the time-independent
Schrödinger equation

H0(R)

⎛

⎜⎝
C1(R)

...
CN (R)

⎞

⎟⎠ = E(R)

⎛

⎜⎝
C1(R)

...
CN (R)

⎞

⎟⎠, (2.1)

where R(t) = R0 + ϵt is the adiabatically changing parameter
with ϵ ≪ 1. In Eq. (2.1), the quantum number n for each
eigenvalue and eigenstate is suppressed for simplicity. Let us
assume

"0(R(t)) =

⎛

⎜⎝
C1(R)

...
CN (R)

⎞

⎟⎠ exp
(

− i

h̄

∫ t

0
E(R(t ′))dt ′

)
eiξ (t)

(2.2)

to be a quasiadiabatic state, i.e., adiabatically evolving state.
Here ξ is the adiabatic phase [14–16] defined by

ξ (t) = i

∫ t

0
dt ′

(
C∗

1
∂C1

∂t
+ · · · + C∗

N

∂CN

∂t

)

= iϵ

∫ t

0
dt ′

(
C∗

1
∂C1

∂R
+ · · · + C∗

N

∂CN

∂R

)
. (2.3)
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Here v(t) is a velocity function available from ↵(t) in the

asymptotic limit:

v(t) = lim
✏!0,↵!1

✏↵(t) (2.14)

= v̄

✓
1� cos

2⇡

T
FF

t

◆
,

where v̄ = lim
✏!0,↵!1 ✏↵̄(= finite) is the mean of v(t).

Consequently

R(⇤(t)) = R0 + lim
✏!0,↵̄!1

"⇤(t)

= R0 +

Z
t

0
v(t0)dt0

= R0 + v̄


t� T

FF

2⇡
sin

✓
2⇡

T
FF

t

◆�
,

for 0  t  T
FF

. (2.15)

H
FF

is the driving Hamiltonian and H̃
n

is the regular-

ization term obtained from Eq.(2.7) to generate the fast-

forward scheme in spin system.

There is a relation between H̃
n

in Eq.(2.7) and

Demirplak-Rice-Berry’s counter-diabatic termH [5–7]. If

there is an n-independent regularization term H̃ among

{H̃
n

}, we define H ⌘ v(t)H̃(R(⇤(t))) with use of v(t) =
@R(⇤(t))

@t

. Then Eq.(2.7) becomes

H 0 = i~ @

@t
 0 � i~

NX

j=1

C⇤
j

@C
j

@t
 0, (2.16)

which can be rewritten as

H|ni = i~ @

@t
|ni � i~|nihn| @

@t
|ni, (2.17)

where |ni means the n-th eigenstate of the Hamiltonian

in Eq.(2.1). Operating both side of Eq.(2.17) on hn|, and
summing over n, we have

H
X

n

|nihn| = i~
X

n

@

@t
|nihn|� i~

X

n

|nihn| @
@t

|nihn|.
(2.18)

Noting the completeness condition for the eigenstates :P
n

|nihn| = 1, we have

H = i~
X

n

✓
@

@t
|nihn|� |nihn| @

@t
|nihn|

◆
, (2.19)

which agrees with Demirplak-Rice-Berry’s formula.

Therefore v(t)H̃(R(⇤(t))) corresponds to the counter-

diabatic term. Using this correspondence, one may call

v(t)H̃
n

(R(⇤(t))) as a state-dependent counter-diabatic

term. Hereafter we shall be concerned with the fast for-

ward of adiabatic dynamics of one of the adiabatic states

(e.g., the ground state), and thereby the su�x n in H̃
n

will be suppressed.

Note: Demirplak-Rice-Berry(DRB)’s counter-

diabatic(CD) term is state-independent by nature,

and can also be reproduced by the inverse engineering

[26] based on the Lewis-Riesenfeld’s invariant theory [8].

Inspired by the works [12, 27] on a streamlined version

of the fast-forward method, Patra and Jarzynski [28]

proposed a framework for constructing STA from the

velocity and acceleration flow field which characterizes

the adiabatic evolution, providing compact expressions

for both CD term and fast-forward potentials. Since

the flow field is uniquely defined using each adiabatic

eigenstate, there appears only one state-dependent

CD term, which is not equivalent to DRB’s CD term,

although the equivalence will be recovered if two kind of

CD terms will be projected onto each of adiabatic states.

By contrast, our formalism here can generate plural

number of sate-dependent CD terms for each adiabatic

state, which can include a state-independent one.

Now we investigate a single spin system in our scheme,

and show the fast forward of adiabatic dynamics in

Landau-Zener (LZ) model [29, 30]. We consider a mag-

netic field :

B(t) =

0

B@
�

0

R(t)

1

CA , (2.20)

where � is a constant. The Hamiltonian is given by

H0(R(t)) =
1

2
� ·B =

1

2

 
R(t) �

� �R(t)

!
(2.21)

with the eigenvalues �± = ±
p
R

2+�2

2 and eigenstates

 ±
0 =

 
C±

1

C±
2

!
=

 
��/s±

R⌥
p
R

2+�2

s±

!
, (2.22)

where

s± ⌘
h
2
p

R2 +�2
⇣p

R2 +�2 ⌥R
⌘i1/2

. (2.23)

Now we choose one of the states with �+ and  +
0 , and

consider the adiabatic dynamics where R = R0+ ✏t. The

adiabatically evolving state is :

 0(t) =

 
� �

s+

R�
p
R

2+�2

s+

!
e�

i

~
R

t

0

p
R

2+�2

2 dt

0
e⇠(t). (2.24)

Noting that H̃
ij

is traceless (H̃11 = - H̃22) and Hermitian

(H̃⇤
21 =H̃12), Eq.(2.7) constitutes a rank = 2 linear alge-

braic equation for two unknowns (H̃11 and H̃12). With
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Here v(t) is a velocity function available from ↵(t) in the

asymptotic limit:

v(t) = lim
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1� cos

2⇡

T
FF

t

◆
,

where v̄ = lim
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Consequently

R(⇤(t)) = R0 + lim
✏!0,↵̄!1

"⇤(t)

= R0 +

Z
t

0
v(t0)dt0
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
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FF
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sin

✓
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T
FF

t

◆�
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FF
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H
FF

is the driving Hamiltonian and H̃
n

is the regular-

ization term obtained from Eq.(2.7) to generate the fast-

forward scheme in spin system.

There is a relation between H̃
n

in Eq.(2.7) and

Demirplak-Rice-Berry’s counter-diabatic termH [5–7]. If

there is an n-independent regularization term H̃ among

{H̃
n

}, we define H ⌘ v(t)H̃(R(⇤(t))) with use of v(t) =
@R(⇤(t))

@t

. Then Eq.(2.7) becomes

H 0 = i~ @

@t
 0 � i~

NX

j=1

C⇤
j

@C
j

@t
 0, (2.16)

which can be rewritten as

H|ni = i~ @

@t
|ni � i~|nihn| @

@t
|ni, (2.17)

where |ni means the n-th eigenstate of the Hamiltonian

in Eq.(2.1). Operating both side of Eq.(2.17) on hn|, and
summing over n, we have

H
X

n

|nihn| = i~
X

n

@

@t
|nihn|� i~

X

n

|nihn| @
@t

|nihn|.
(2.18)

Noting the completeness condition for the eigenstates :P
n

|nihn| = 1, we have

H = i~
X

n

✓
@

@t
|nihn|� |nihn| @

@t
|nihn|

◆
, (2.19)

which agrees with Demirplak-Rice-Berry’s formula.

Therefore v(t)H̃(R(⇤(t))) corresponds to the counter-

diabatic term. Using this correspondence, one may call

v(t)H̃
n

(R(⇤(t))) as a state-dependent counter-diabatic

term. Hereafter we shall be concerned with the fast for-

ward of adiabatic dynamics of one of the adiabatic states

(e.g., the ground state), and thereby the su�x n in H̃
n

will be suppressed.

Note: Demirplak-Rice-Berry(DRB)’s counter-

diabatic(CD) term is state-independent by nature,

and can also be reproduced by the inverse engineering

[26] based on the Lewis-Riesenfeld’s invariant theory [8].

Inspired by the works [12, 27] on a streamlined version

of the fast-forward method, Patra and Jarzynski [28]

proposed a framework for constructing STA from the

velocity and acceleration flow field which characterizes

the adiabatic evolution, providing compact expressions

for both CD term and fast-forward potentials. Since

the flow field is uniquely defined using each adiabatic

eigenstate, there appears only one state-dependent

CD term, which is not equivalent to DRB’s CD term,

although the equivalence will be recovered if two kind of

CD terms will be projected onto each of adiabatic states.

By contrast, our formalism here can generate plural

number of sate-dependent CD terms for each adiabatic

state, which can include a state-independent one.

Now we investigate a single spin system in our scheme,

and show the fast forward of adiabatic dynamics in

Landau-Zener (LZ) model [29, 30]. We consider a mag-

netic field :

B(t) =

0

B@
�

0

R(t)

1

CA , (2.20)

where � is a constant. The Hamiltonian is given by

H0(R(t)) =
1

2
� ·B =

1

2

 
R(t) �

� �R(t)

!
(2.21)

with the eigenvalues �± = ±
p
R

2+�2

2 and eigenstates

 ±
0 =

 
C±

1

C±
2

!
=

 
��/s±

R⌥
p
R

2+�2

s±

!
, (2.22)

where

s± ⌘
h
2
p

R2 +�2
⇣p

R2 +�2 ⌥R
⌘i1/2

. (2.23)

Now we choose one of the states with �+ and  +
0 , and

consider the adiabatic dynamics where R = R0+ ✏t. The

adiabatically evolving state is :

 0(t) =

 
� �

s+

R�
p
R

2+�2

s+

!
e�

i

~
R

t

0

p
R

2+�2

2 dt

0
e⇠(t). (2.24)

Noting that H̃
ij

is traceless (H̃11 = - H̃22) and Hermitian

(H̃⇤
21 =H̃12), Eq.(2.7) constitutes a rank = 2 linear alge-

braic equation for two unknowns (H̃11 and H̃12). With

2

tant in the context of quantum computers. In Section

II we shall construct the scheme of fast forward of adia-

batic quantum spin dynamics and elucidate its relation

with the method of transitionless quantum driving. In

Section III, we shall apply the fast forward scheme to

two minimum models for quantum annealing and gener-

ation of entangled states, and obtain a wide variety of

state-dependent counter-diabatic terms to guarantee the

accelerated entanglement dynamics. Section IV is de-

voted to summary and discussions. Appendix gives a list

of formal solutions for state-dependent counter-diabatic

terms in the model(B).

II. FAST-FORWARD OF ADIABATIC SPIN

DYNAMICS

Consider the Hamiltonian for the spin systems to

be characterized by the slowly time-changing parameter

R(t) such as the exchange interaction, magnetic field,

etc. Then we can study the eigenvalue problem for the

time-independent Schrödinger equation :

H0(R)

0

BB@

C1(R)
...

C
N

(R)

1

CCA = E(R)

0

BB@

C1(R)
...

C
N

(R)

1

CCA , (2.1)

where R(t) = R0 + ✏t is the adiabatically-changing pa-

rameter with ✏ ⌧ 1. In Eq.(2.1), the quantum number n

for each eigenvalue and eigenstate is suppressed for sim-

plicity. Let us assume

 0(R(t)) =

0

BB@

C1(R)
...

C
N

(R)

1

CCA e�
i

~
R

t

0 E(R(t0))dt0ei⇠(t), (2.2)

to be a quasi-adiabatic state, i.e., adiabatically evolving

state. ⇠ is the adiabatic phase [14–16] defined by

⇠(t) = i

Z
t

0
dt0
⇣
C⇤

1
@C1

@t
+ ...+ C⇤

N

@C
N

@t

⌘
(2.3)

= i✏

Z
t

0
dt0
⇣
C⇤

1
@C1

@R
+ ...+ C⇤

N

@C
N

@R

⌘
.

 0(R(t)) in Eq.(2.2), as it stands, cannot satisfy the

time-dependent Schrödinger equation (TDSE). To make

 0(R(t)) to satisfy the TDSE, we must regularize the

Hamiltonian as

Hreg

0 (R(t)) = H0(R(t)) + ✏H̃
n

(R(t)). (2.4)

Then TDSE becomes

i~ @

@t
 0(R(t)) = (H0 + ✏H̃

n

) 0(R(t)). (2.5)

Here H̃
n

is the n-th state-dependent regularization term

[2]. Substituting  0(R(t)) in Eq.(2.2) into the above

TDSE, we see in order of O(✏0) Eq.(2.1), i.e.,

H0 0 = E 0, (2.6)

and in order of O(✏1)

H̃
n

0

BB@

C1(R)
...

C
N

(R)

1

CCA = i~

0

BB@

@C1(R)
@R

...
@C

N

(R)
@R

1

CCA�i~
 

NX

j=1

C⇤
j

@C
j

@R

!
0

BB@

C1(R)
...

C
N

(R)

1

CCA .

(2.7)

The fast forward state is defined by

 
FF

(t) =

0

BB@

C1(R(⇤(t)))
...

C
N

(R(⇤(t)))

1

CCA e�
i

~
R

t

0 E((R(⇤(t0))))dt0ei⇠((R(⇤(t))))

(2.8)

where ⇤(t) is an advanced time defined by

⇤(t) =

Z
t

0
↵(t0)dt0, (2.9)

with the standard time t. ↵(t) is a magnification time-

scale factor given by ↵(0) = 1, ↵(t) > 1 (0 < t < T
FF

)

and ↵(t) = 1 (t � T
FF

). We consider the fast forward

dynamics which reproduces the target state  0(T ) in a

shorter final time T
FF

defined by

T =

Z
T

FF

0
↵(t)dt. (2.10)

The explicit expression for ↵(t) in the fast-forward range

(0  t  T
FF

) is typically given by [2] as :

↵(t) = ↵̄� (↵̄� 1) cos

✓
2⇡

T
FF

t

◆
, (2.11)

where ↵̄ is the mean value of ↵(t) and is given by

↵̄ = T/T
FF

. By taking the time derivative of  
FF

in

Eq.(2.8), and using the relation

@ 0(R(⇤(t)))

@t
= ↵✏

@ 0

@R
(2.12)

together with Eqs.(2.1) and (2.7), we have

i~@ FF

@t
=
⇣
H0(R(⇤(t))) + v(t)H̃

n

(R(⇤(t)))
⌘
 

FF

⌘ H
FF

 
FF

. (2.13)

4

use of

@C1

@R
= � 1

2
p
2

�

Q5/2
(Q�R)

1
2 (2.25)

@C2

@R
=

1

2
p
2

(Q�R)
1
2 (Q+R)

Q5/2
,

we can solve Eq.(2.7) for H̃ as :

H̃11 = 0 (2.26)

H̃12 = i
~
2

�

Q2

⇠(t) = 0

where

Q ⌘
p
R2 +�2. (2.27)

The state-dependent counter-diabatic term and the fast-

forward Hamiltonian are written respectively as

H = v(t)H̃ =

 
0 v(t)i~2

�
Q

2

�v(t)i~2
�
Q

2 0

!
(2.28)

and

H
FF

=

 
R(⇤(t))

2
�
2 + v(t)i~2

�
Q

2

�
2 � v(t)i~2

�
Q

2 �R(⇤(t))
2

!
. (2.29)

The fast forward state is obtained from Eq.(2.8) as

 
FF

=

 
C+

1 (⇤(t))

C+
2 (⇤(t))

!
e�

i

~
R

t

0

p
R(⇤(t0))2+�2

2 dt

0
.

(2.30)

The total driving magnetic field is written as

B
FF

(t) =

0

B@
�

�v(t)~ �
R(⇤(t))2+�2

R(⇤(t))

1

CA . (2.31)

Choosing another eigenstate  �
0 in Eq.(2.22), we can

reproduce the regularization term in Eq.(2.26) and the

counter-diabatic term in Eq.(2.28), and therefore these

terms are state-independent. By applying Demirplak-

Rice-Berry formula in Eq.(2.19), on the other hand, one

can obtain the counter-diabatic terms H which agrees

with Eq.(2.28).

So long as we shall stay in single spin dynamics,

therefore, Eq.(2.7) conveys no new information beyond

Eq.(2.19) : Both equations lead to the identical result.

The situation will be dramatically changed when we shall

proceed to a system of coupled spins, which shows entan-

glement dynamics.

III. TWO SPIN SYSTEMS

We shall generalize the scheme to two-spin systems

which shows entanglement dynamics[20, 31]. Here, the

number of independent equations in Eq.(2.7) is less

than that of the unknown {H̃
ij

} (1  i, j  4).

Some extra strategy should be introduced. We as-

sume the experimentally-realizable form for the reg-

ularization term (H̃) in Eq.(2.7), which includes the

diagonal-exchange interaction J̃1 = J̃1(R(t)), J̃2 =

J̃2(R(t)), J̃3 = J̃3(R(t)), o↵diagonal-exchange interac-

tion W̃1 = W̃1(R(t)), W̃2 = W̃2(R(t)), W̃3 = W̃3(R(t)),

and 3-component magnetic field B̃ = B̃(R(t)). The can-

didate for regularization Hamiltonian H̃ takes the follow-

ing form :

H̃ = J̃1�
x

1�
x

2 + J̃2�
y

1�
y

2 + J̃3�
z

1�
z

2 + W̃1(�
x

1�
y

2 +�y

1�
x

2 )+ W̃2(�
y

1�
z

2 +�z

1�
y

2 )+ W̃3(�
z

1�
x

2 +�x

1�
z

2)+
1

2
(�1 +�2) · B̃, (3.1)

where �x,y,z

1 and �x,y,z

2 represent Pauli matrices for two spins. Arranging the bases as |""i, |"#i, |#"i, and |##i, we
obtain the matrix form:

H̃ =

0

BBB@

J̃3 + B̃
z

1
2 (B̃x

� iB̃
y

)� iW̃2 + W̃3
1
2 (B̃x

� iB̃
y

)� iW̃2 + W̃3 J̃1 � J̃2 � i2W̃1
1
2 (B̃x

+ iB̃
y

) + iW̃2 + W̃3 �J̃3 J̃1 + J̃2
1
2 (B̃x

� iB̃
y

) + iW̃2 � W̃3
1
2 (B̃x

+ iB̃
y

) + iW̃2 + W̃3 J̃1 + J̃2 �J̃3
1
2 (B̃x

� iB̃
y

) + iW̃2 � W̃3

J̃1 � J̃2 + i2W̃1
1
2 (B̃x

+ iB̃
y

)� iW̃2 � W̃3
1
2 (B̃x

+ iB̃
y

)� iW̃2 � W̃3 J̃3 � B̃
z

1

CCCA
.

(3.2)

We see: B̃
y

, W̃1 and W̃2 contribute to the imaginary part of the matrix H̃, while J̃1, J̃2, J̃3, W̃3, B̃x

and B̃
z

1. NAKAMURA’S NOTE (DECEMBER 26, 2018)

P
LZ

= exp(�⇡�2

2v ), Q =
p
R2 +�2 Dear all:

I find that the divergence in the regularization terms always appears so long as we start from J = 0
at t = 0 in case of N = 4 spin clusters. By contrast, in case of N = 3 spin clusters, we saw no such a
problem. In case of N = 4 spin clusters, the solutions for the regularization terms have denominators which
are vanishing for J = 0 at t = 0, leading to the divergence! However, the problem is not serious, and can be
resolved as follows.
Let’s now define: J = J0 +R(⇤(t)), and B

x

= B0 �R(⇤(t)) with R(⇤(t)) = v̄
h
t� TFF

2⇡ sin
⇣

2⇡
TFF

t
⌘i

. Here

B0 = 10, v̄ = 100, T
FF

= 0.1. We shall choose J0 = 1, although we chose J0 = 0 in case of N = 3 spin
clusters.
As usual, we should compute C

j

, @
R

C
j

with use of the analytic expression for the ground-sate eigenvectors.
The simplest expressions for the initial values such as C1 = C2 = · · · = 1

4 are now useless!
· · · · · ·
To Iwan: I hope you are fine despite the tsunami disaster in Selat Sunda. With use of the new definition

for J above, please make eps files for the time dependence of probability amplitudes and that of the v(t)-
multiplied regularization terms for triangular pyramid, square and primary star graph. You may employ
J0 = 0.1, if the resultant figures will be more remarkable.
· · · · · ·
To Sanat: The divergence of the probability amplitudes for J = 0 turns out not a problem, as explained

above. Please now solve the linear algebraic equation in Eq.(5.21) for the open linear 4 spins, and obtain

the expressions for W̃1, W̃2, W̃3, W̃4 and Q̃. Please write the resultant expressions in Tex text (with use of
my latest Tex text) together with pdf text.
With best wishes,
Katsuhiro Nakamura
P.S. The problem of the divergence in the regularization terms is not new, and already appeared in case

of N = 2 spins (see Table 1 of Phys. Rev. A96, 052106 (2017) by Iwan et a) where no explicit numerical
calculation of the time dependence of the regularization terms was done.
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2

(Q�R)
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2 (Q+R)
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,

we can solve Eq.(2.7) for H̃ as :

H̃11 = 0 (2.26)

H̃12 = i
~
2

�

Q2

⇠(t) = 0

where

Q ⌘
p
R2 +�2. (2.27)

The state-dependent counter-diabatic term and the fast-

forward Hamiltonian are written respectively as

H = v(t)H̃ =

 
0 v(t)i~2

�
Q

2

�v(t)i~2
�
Q

2 0

!
(2.28)

and

H
FF

=

 
R(⇤(t))

2
�
2 + v(t)i~2

�
Q

2

�
2 � v(t)i~2

�
Q

2 �R(⇤(t))
2

!
. (2.29)

The fast forward state is obtained from Eq.(2.8) as

 
FF

=

 
C+

1 (⇤(t))

C+
2 (⇤(t))

!
e�

i

~
R

t

0

p
R(⇤(t0))2+�2

2 dt

0
.

(2.30)

The total driving magnetic field is written as

B
FF

(t) =

0

B@
�

�v(t)~ �
R(⇤(t))2+�2

R(⇤(t))

1

CA . (2.31)

Choosing another eigenstate  �
0 in Eq.(2.22), we can

reproduce the regularization term in Eq.(2.26) and the

counter-diabatic term in Eq.(2.28), and therefore these

terms are state-independent. By applying Demirplak-

Rice-Berry formula in Eq.(2.19), on the other hand, one

can obtain the counter-diabatic terms H which agrees

with Eq.(2.28).

So long as we shall stay in single spin dynamics,

therefore, Eq.(2.7) conveys no new information beyond

Eq.(2.19) : Both equations lead to the identical result.

The situation will be dramatically changed when we shall

proceed to a system of coupled spins, which shows entan-

glement dynamics.

III. TWO SPIN SYSTEMS

We shall generalize the scheme to two-spin systems

which shows entanglement dynamics[20, 31]. Here, the

number of independent equations in Eq.(2.7) is less

than that of the unknown {H̃
ij

} (1  i, j  4).

Some extra strategy should be introduced. We as-

sume the experimentally-realizable form for the reg-

ularization term (H̃) in Eq.(2.7), which includes the

diagonal-exchange interaction J̃1 = J̃1(R(t)), J̃2 =

J̃2(R(t)), J̃3 = J̃3(R(t)), o↵diagonal-exchange interac-

tion W̃1 = W̃1(R(t)), W̃2 = W̃2(R(t)), W̃3 = W̃3(R(t)),

and 3-component magnetic field B̃ = B̃(R(t)). The can-

didate for regularization Hamiltonian H̃ takes the follow-

ing form :

H̃ = J̃1�
x

1�
x

2 + J̃2�
y

1�
y

2 + J̃3�
z

1�
z

2 + W̃1(�
x

1�
y

2 +�y
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z

2 +�z

1�
y

2 )+ W̃3(�
z
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x

2 +�x

1�
z

2)+
1

2
(�1 +�2) · B̃, (3.1)

where �x,y,z

1 and �x,y,z

2 represent Pauli matrices for two spins. Arranging the bases as |""i, |"#i, |#"i, and |##i, we
obtain the matrix form:

H̃ =

0
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CCCA
.

(3.2)

We see: B̃
y

, W̃1 and W̃2 contribute to the imaginary part of the matrix H̃, while J̃1, J̃2, J̃3, W̃3, B̃x

and B̃
z

driving Hamiltonian:

fast-forward Hamiltonian:
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we can solve Eq.(2.7) for H̃ as :
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The total driving magnetic field is written as
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Choosing another eigenstate  �
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counter-diabatic term in Eq.(2.28), and therefore these

terms are state-independent. By applying Demirplak-

Rice-Berry formula in Eq.(2.19), on the other hand, one

can obtain the counter-diabatic terms H which agrees

with Eq.(2.28).

So long as we shall stay in single spin dynamics,

therefore, Eq.(2.7) conveys no new information beyond

Eq.(2.19) : Both equations lead to the identical result.

The situation will be dramatically changed when we shall

proceed to a system of coupled spins, which shows entan-

glement dynamics.

III. TWO SPIN SYSTEMS

We shall generalize the scheme to two-spin systems

which shows entanglement dynamics[20, 31]. Here, the

number of independent equations in Eq.(2.7) is less

than that of the unknown {H̃
ij

} (1  i, j  4).

Some extra strategy should be introduced. We as-

sume the experimentally-realizable form for the reg-

ularization term (H̃) in Eq.(2.7), which includes the

diagonal-exchange interaction J̃1 = J̃1(R(t)), J̃2 =

J̃2(R(t)), J̃3 = J̃3(R(t)), o↵diagonal-exchange interac-

tion W̃1 = W̃1(R(t)), W̃2 = W̃2(R(t)), W̃3 = W̃3(R(t)),

and 3-component magnetic field B̃ = B̃(R(t)). The can-

didate for regularization Hamiltonian H̃ takes the follow-
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, W̃1 and W̃2 contribute to the imaginary part of the matrix H̃, while J̃1, J̃2, J̃3, W̃3, B̃x
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Fast forward of adiabatic LZ state-change with no transition!
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Note that the Demirplak-Rice-Berry (DRB) counterdiabatic
(CD) term is state independent and can also be reproduced by
the inverse engineering [26] based on the Lewis-Riesenfeld
invariant theory [8]. Inspired by the works [12,27] on a
streamlined version of the fast-forward method, Patra and
Jarzynski [28] proposed a framework for constructing the STA
from the velocity and acceleration flow field that characterizes
the adiabatic evolution, providing compact expressions for
both the CD term and fast-forward potentials. Since the flow
field is uniquely defined using each adiabatic eigenstate, the
Patra-Jarzynski framework generates only one state-dependent
CD term, which is not equivalent to the DRB CD term,
although the equivalence will be recovered if two kind of
CD terms will be projected onto each of adiabatic states.
By contrast, our formalism generates a plural number of
state-dependent CD terms for each adiabatic state, which can
include a state-independent one.

Now we investigate a single-spin system in our scheme and
show the fast forward of the adiabatic dynamics in the Landau-
Zener model [29,30] described by the spin Hamiltonian

H0(R(t)) = 1
2
σ · B = 1

2

(
R(t) !
! −R(t)

)
, (2.19)

where ! is a constant. Equation (2.19) has the eigenvalues
λ± = ±

√
R2+!2

2 and eigenstates

#±
0 =

(
C±

1

C±
2

)
=

(
−!/s±

R∓
√

R2+!2

s±

)

, (2.20)

where

s± ≡ [2
√

R2 + !2(
√

R2 + !2 ∓ R)]1/2. (2.21)

Now we choose one of the states with λ+ and #+
0 and consider

the adiabatic dynamics where R = R0 + ϵt . The adiabatically
evolving state is

#0(t) =
(

− !
s+

R−
√

R2+!2

s+

)

exp
(

− i

h̄

∫ t

0

√
R2 + !2

2
dt ′

)
eξ (t).

(2.22)

Noting that H̃ij is traceless (H̃11 = −H̃22) and Hermitian
(H̃∗

21 = H̃12), Eq. (2.7) constitutes a rank-2 linear algebraic
equation for two unknowns (H̃11 and H̃12). With the use of

∂C1

∂R
= − 1

2
√

2

!

Q5/2
(Q − R)1/2,

∂C2

∂R
= 1

2
√

2

(Q − R)1/2(Q + R)
Q5/2

, (2.23)

we can solve Eq. (2.7) for H̃ as

H̃11 = 0, H̃12 = i
h̄

2
!

Q2
, (2.24)

with Q ≡
√

R2 + !2 and ξ = 0. The state-dependent coun-
terdiabatic term and the fast-forward Hamiltonian are written,
respectively, as

H = v(t)H̃ =
(

0 v(t)i h̄
2

!
Q2

−v(t)i h̄
2

!
Q2 0

)

(2.25)

and

HFF =
(

R('(t))
2

!
2 + v(t)i h̄

2
!
Q2

!
2 − v(t)i h̄

2
!
Q2 −R('(t))

2

)

. (2.26)

The fast-forward state is obtained from Eq. (2.8) as

#FF =
(

C+
1 (R('(t)))

C+
2 (R('(t)))

)
exp

(
− i

h̄

∫ t

0

√
R('(t ′))2 + !2

2
dt ′

)
.

(2.27)

The total driving magnetic field is written as

BFF(t) =

⎛

⎝
!

−v(t)h̄ !
R('(t))2+!2

R('(t))

⎞

⎠. (2.28)

Choosing another eigenstate #−
0 in Eq. (2.20), we can

reproduce the regularization term in Eq. (2.24) and the
counterdiabatic term in Eq. (2.25) and therefore these terms
are state independent. By applying the Demirplak-Rice-Berry
formula in Eq. (2.18), on the other hand, one can obtain the
counterdiabatic terms H, which agree with Eq. (2.25). So long
as we stay in the single-spin dynamics, therefore, Eq. (2.7)
conveys no new information beyond Eq. (2.18): Both equations
lead to the identical result. The situation will be dramatically
changed when we proceed to a system of coupled spins, which
shows the entanglement dynamics.

III. TWO-SPIN SYSTEMS

We will generalize the scheme to two-spin systems that
show the entanglement dynamics [20,31]. Here the number
of independent equations in Eq. (2.7) is lower than that of
the unknown {H̃ij } (1 ! i and j ! 4). Some extra strategy
should be introduced. We assume the experimentally realizable
form for the regularization term H̃ in Eq. (2.7), which
includes the diagonal-exchange interaction J̃1 = J̃1(R(t)),
J̃2 = J̃2(R(t)), and J̃3 = J̃3(R(t)), the off-diagonal-exchange
interaction W̃1 = W̃1(R(t)), W̃2 = W̃2(R(t)), W̃3 = W̃3(R(t)),
and the three-component magnetic field B̃ = B̃(R(t)). The
candidate for the regularization Hamiltonian H̃ takes the form

H̃ = J̃1σ
x
1 σ x

2 + J̃2σ
y
1 σ

y
2 + J̃3σ

z
1 σ z

2 + W̃1
(
σ x

1 σ
y
2 + σ

y
1 σ x

2

)
+ W̃2

(
σ

y
1 σ z

2 + σ z
1 σ

y
2

)
+ W̃3

(
σ z

1 σ x
2 + σ x

1 σ z
2

)
+ 1

2 (σ 1 + σ 2) · B̃, (3.1)

where σ
x,y,z
1 and σ

x,y,z
2 represent Pauli matrices for two spins. The regularization Hamiltonian in Eq. (3.1) shows an expression

widely accepted in the context of magnetic materials. In Eq. (3.1) we suppressed the products of three or more Pauli matrices,
which do not exist in magnetic systems. Likewise we ignored the spin-independent term, which gives a deviation from Tr(H̃) = 0
and is not essential in thermodynamic properties. The regularization Hamiltonian including these extra terms not acceptable in
magnetic systems will not be investigated in the present paper. Arranging the bases as |↑↑⟩, |↑↓⟩, |↓↑⟩, and |↓↓⟩, we obtain the
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Note that the Demirplak-Rice-Berry (DRB) counterdiabatic
(CD) term is state independent and can also be reproduced by
the inverse engineering [26] based on the Lewis-Riesenfeld
invariant theory [8]. Inspired by the works [12,27] on a
streamlined version of the fast-forward method, Patra and
Jarzynski [28] proposed a framework for constructing the STA
from the velocity and acceleration flow field that characterizes
the adiabatic evolution, providing compact expressions for
both the CD term and fast-forward potentials. Since the flow
field is uniquely defined using each adiabatic eigenstate, the
Patra-Jarzynski framework generates only one state-dependent
CD term, which is not equivalent to the DRB CD term,
although the equivalence will be recovered if two kind of
CD terms will be projected onto each of adiabatic states.
By contrast, our formalism generates a plural number of
state-dependent CD terms for each adiabatic state, which can
include a state-independent one.

Now we investigate a single-spin system in our scheme and
show the fast forward of the adiabatic dynamics in the Landau-
Zener model [29,30] described by the spin Hamiltonian

H0(R(t)) = 1
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σ · B = 1
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Noting that H̃ij is traceless (H̃11 = −H̃22) and Hermitian
(H̃∗

21 = H̃12), Eq. (2.7) constitutes a rank-2 linear algebraic
equation for two unknowns (H̃11 and H̃12). With the use of
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we can solve Eq. (2.7) for H̃ as

H̃11 = 0, H̃12 = i
h̄

2
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Q2
, (2.24)

with Q ≡
√

R2 + !2 and ξ = 0. The state-dependent coun-
terdiabatic term and the fast-forward Hamiltonian are written,
respectively, as

H = v(t)H̃ =
(
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and
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The fast-forward state is obtained from Eq. (2.8) as

#FF =
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The total driving magnetic field is written as

BFF(t) =
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Choosing another eigenstate #−
0 in Eq. (2.20), we can

reproduce the regularization term in Eq. (2.24) and the
counterdiabatic term in Eq. (2.25) and therefore these terms
are state independent. By applying the Demirplak-Rice-Berry
formula in Eq. (2.18), on the other hand, one can obtain the
counterdiabatic terms H, which agree with Eq. (2.25). So long
as we stay in the single-spin dynamics, therefore, Eq. (2.7)
conveys no new information beyond Eq. (2.18): Both equations
lead to the identical result. The situation will be dramatically
changed when we proceed to a system of coupled spins, which
shows the entanglement dynamics.

III. TWO-SPIN SYSTEMS

We will generalize the scheme to two-spin systems that
show the entanglement dynamics [20,31]. Here the number
of independent equations in Eq. (2.7) is lower than that of
the unknown {H̃ij } (1 ! i and j ! 4). Some extra strategy
should be introduced. We assume the experimentally realizable
form for the regularization term H̃ in Eq. (2.7), which
includes the diagonal-exchange interaction J̃1 = J̃1(R(t)),
J̃2 = J̃2(R(t)), and J̃3 = J̃3(R(t)), the off-diagonal-exchange
interaction W̃1 = W̃1(R(t)), W̃2 = W̃2(R(t)), W̃3 = W̃3(R(t)),
and the three-component magnetic field B̃ = B̃(R(t)). The
candidate for the regularization Hamiltonian H̃ takes the form

H̃ = J̃1σ
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1 σ x
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y
1 σ

y
2 + J̃3σ

z
1 σ z

2 + W̃1
(
σ x

1 σ
y
2 + σ

y
1 σ x

2

)
+ W̃2

(
σ

y
1 σ z

2 + σ z
1 σ

y
2

)
+ W̃3

(
σ z

1 σ x
2 + σ x

1 σ z
2

)
+ 1

2 (σ 1 + σ 2) · B̃, (3.1)

where σ
x,y,z
1 and σ

x,y,z
2 represent Pauli matrices for two spins. The regularization Hamiltonian in Eq. (3.1) shows an expression

widely accepted in the context of magnetic materials. In Eq. (3.1) we suppressed the products of three or more Pauli matrices,
which do not exist in magnetic systems. Likewise we ignored the spin-independent term, which gives a deviation from Tr(H̃) = 0
and is not essential in thermodynamic properties. The regularization Hamiltonian including these extra terms not acceptable in
magnetic systems will not be investigated in the present paper. Arranging the bases as |↑↑⟩, |↑↓⟩, |↓↑⟩, and |↓↓⟩, we obtain the
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matrix form

H̃ =

⎛

⎜⎜⎜⎝

J̃3 + B̃z
1
2 (B̃x − iB̃y) − iW̃2 + W̃3

1
2 (B̃x − iB̃y) − iW̃2 + W̃3 J̃1 − J̃2 − i2W̃1

1
2 (B̃x + iB̃y) + iW̃2 + W̃3 −J̃3 J̃1 + J̃2

1
2 (B̃x − iB̃y) + iW̃2 − W̃3

1
2 (B̃x + iB̃y) + iW̃2 + W̃3 J̃1 + J̃2 −J̃3

1
2 (B̃x − iB̃y) + iW̃2 − W̃3

J̃1 − J̃2 + i2W̃1
1
2 (B̃x + iB̃y) − iW̃2 − W̃3

1
2 (B̃x + iB̃y) − iW̃2 − W̃3 J̃3 − B̃z

⎞

⎟⎟⎟⎠
.

(3.2)

We see that B̃y , W̃1, and W̃2 contribute to the imaginary part
of the matrix H̃, while J̃1, J̃2, J̃3, W̃3, B̃x , and B̃z contribute to
its real part. The explicit expression for H̃ in Eq. (3.2) greatly
reduces the number of unknown {H̃ij } and helps us to solve
Eq. (2.7). As two-spin systems we will investigate a simple
transverse Ising model (Sec. III A), a minimum model for
quantum annealing (Sec. III B), and a model for generation of
entanglement (Sec. III C).

A. Simple transverse Ising model

First of all, we study a simple Ising transverse-field model
[21] where our scheme reproduces the state-independent
counterdiabatic terms obtained by the method of transitionless
quantum driving. The Hamiltonian is written as

H0 = J (R(t))σ z
1 σ z

2 − 1
2

(
σ x

1 + σ x
2

)
Bx(R(t)). (3.3)

By using the bases |↑↑⟩, |↑↓⟩, |↓↑⟩, and |↓↓⟩, we have

H0 =

⎛

⎜⎜⎜⎝

J −Bx

2 −Bx

2 0

−Bx

2 −J 0 −Bx

2

−Bx

2 0 −J −Bx

2

0 −Bx

2 −Bx

2 J

⎞

⎟⎟⎟⎠
, (3.4)

with the eigenvalues −J , J , −
√

J 2 + B2
x , and

√
J 2 + B2

x . The
normalized eigenvector are, respectively,

⎛

⎜⎜⎜⎜⎝

0

− 1√
2

1√
2

0

⎞

⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎝

− 1√
2

0

0
1√
2

⎞

⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bx

2
√

B2
x+J 2+J

√
B2

x+J 2

√
B2

x+J 2+J

2
√

B2
x+J 2+J

√
B2

x+J 2

√
B2

x+J 2+J

2
√

B2
x+J 2+J

√
B2

x+J 2

Bx

2
√

B2
x+J 2+J

√
B2

x+J 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bx

2
√

B2
x+J 2−J

√
B2

x+J 2

−
√

B2
x+J 2+J

2
√

B2
x+J 2−J

√
B2

x+J 2

−
√

B2
x+J 2+J

2
√

B2
x+J 2−J

√
B2

x+J 2

Bx

2
√

B2
x+J 2−J

√
B2

x+J 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us focus on the ground state (the third state with the
lowest energy −

√
J 2 + B2

x ), where C1 = C4, C2 = C3, and
C1, C2, C3, and C4 are real. From the R derivative of the
normalization we see

∂C2

∂R
C2 + ∂C4

∂R
C4 = 0 (3.5)

and then the adiabatic phase ξ = 0. Due to the symmetry
C1 = C4 and C2 = C3 and noting the real nature of {J̃ ,W̃ ,B̃},
Eq. (2.7) for the regularization terms reduces to

ih̄
∂C4

∂R
= Ã1C4 + Ã2C2,

ih̄
∂C2

∂R
= Ã3C4 + Ã4C2, (3.6)

where Ã1 = H̃11 + H̃14 = J̃1 − J̃2 + J̃3, Ã2 = H̃12 + H̃13 =
B̃x − 2iW̃2, Ã3 = H̃21 + H̃24 = B̃x + 2iW̃2, and Ã4 =
H̃22 + H̃23 = J̃1 + J̃2 − J̃3.

To solve two-component simultaneous linear equations for
H̃ij in Eq. (3.6), we should choose two independent real
variables out of five real variables (J̃1, J̃2, J̃3, W̃2, and B̃x)
appearing in {Ãj }. Among 5C2 = 5!

2!3! choices, we should pick
the cases where the 2 × 2 coefficient matrix for the unknown
{J̃ ,W̃ ,B̃} is regular and each of the two solutions is real. For
example, there is a case where J̃3 and W̃2 are independent real
variables with others zero such that Eq. (3.6) can be reduced
to

ih̄
∂C4

∂R
= J̃3C4 − i2W̃2C2,

ih̄
∂C2

∂R
= i2W̃2C4 − J̃3C2. (3.7)

Equations (3.7) have the solution

J̃3 = aC4 + bC2

C2
4 − C2

2

= 0, (3.8)

W̃2 = i(aC2 + bC4)
2(C2

2 − C2
4 )

, (3.9)

where a = ih̄ ∂C4
∂R

and b = ih̄ ∂C2
∂R

. Noting Eq. (3.5), we find
J̃3 = 0.
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Note that the Demirplak-Rice-Berry (DRB) counterdiabatic
(CD) term is state independent and can also be reproduced by
the inverse engineering [26] based on the Lewis-Riesenfeld
invariant theory [8]. Inspired by the works [12,27] on a
streamlined version of the fast-forward method, Patra and
Jarzynski [28] proposed a framework for constructing the STA
from the velocity and acceleration flow field that characterizes
the adiabatic evolution, providing compact expressions for
both the CD term and fast-forward potentials. Since the flow
field is uniquely defined using each adiabatic eigenstate, the
Patra-Jarzynski framework generates only one state-dependent
CD term, which is not equivalent to the DRB CD term,
although the equivalence will be recovered if two kind of
CD terms will be projected onto each of adiabatic states.
By contrast, our formalism generates a plural number of
state-dependent CD terms for each adiabatic state, which can
include a state-independent one.

Now we investigate a single-spin system in our scheme and
show the fast forward of the adiabatic dynamics in the Landau-
Zener model [29,30] described by the spin Hamiltonian

H0(R(t)) = 1
2
σ · B = 1

2

(
R(t) !
! −R(t)

)
, (2.19)

where ! is a constant. Equation (2.19) has the eigenvalues
λ± = ±

√
R2+!2

2 and eigenstates

#±
0 =

(
C±

1

C±
2

)
=

(
−!/s±

R∓
√

R2+!2

s±

)

, (2.20)

where

s± ≡ [2
√

R2 + !2(
√

R2 + !2 ∓ R)]1/2. (2.21)

Now we choose one of the states with λ+ and #+
0 and consider

the adiabatic dynamics where R = R0 + ϵt . The adiabatically
evolving state is

#0(t) =
(

− !
s+

R−
√

R2+!2

s+

)

exp
(

− i

h̄

∫ t

0

√
R2 + !2

2
dt ′

)
eξ (t).

(2.22)

Noting that H̃ij is traceless (H̃11 = −H̃22) and Hermitian
(H̃∗

21 = H̃12), Eq. (2.7) constitutes a rank-2 linear algebraic
equation for two unknowns (H̃11 and H̃12). With the use of

∂C1

∂R
= − 1

2
√

2

!

Q5/2
(Q − R)1/2,

∂C2

∂R
= 1

2
√

2

(Q − R)1/2(Q + R)
Q5/2

, (2.23)

we can solve Eq. (2.7) for H̃ as

H̃11 = 0, H̃12 = i
h̄

2
!

Q2
, (2.24)

with Q ≡
√

R2 + !2 and ξ = 0. The state-dependent coun-
terdiabatic term and the fast-forward Hamiltonian are written,
respectively, as

H = v(t)H̃ =
(

0 v(t)i h̄
2

!
Q2

−v(t)i h̄
2

!
Q2 0

)

(2.25)

and

HFF =
(

R('(t))
2

!
2 + v(t)i h̄

2
!
Q2

!
2 − v(t)i h̄

2
!
Q2 −R('(t))

2

)

. (2.26)

The fast-forward state is obtained from Eq. (2.8) as

#FF =
(

C+
1 (R('(t)))

C+
2 (R('(t)))

)
exp

(
− i

h̄

∫ t

0

√
R('(t ′))2 + !2

2
dt ′

)
.

(2.27)

The total driving magnetic field is written as

BFF(t) =

⎛

⎝
!

−v(t)h̄ !
R('(t))2+!2

R('(t))

⎞

⎠. (2.28)

Choosing another eigenstate #−
0 in Eq. (2.20), we can

reproduce the regularization term in Eq. (2.24) and the
counterdiabatic term in Eq. (2.25) and therefore these terms
are state independent. By applying the Demirplak-Rice-Berry
formula in Eq. (2.18), on the other hand, one can obtain the
counterdiabatic terms H, which agree with Eq. (2.25). So long
as we stay in the single-spin dynamics, therefore, Eq. (2.7)
conveys no new information beyond Eq. (2.18): Both equations
lead to the identical result. The situation will be dramatically
changed when we proceed to a system of coupled spins, which
shows the entanglement dynamics.

III. TWO-SPIN SYSTEMS

We will generalize the scheme to two-spin systems that
show the entanglement dynamics [20,31]. Here the number
of independent equations in Eq. (2.7) is lower than that of
the unknown {H̃ij } (1 ! i and j ! 4). Some extra strategy
should be introduced. We assume the experimentally realizable
form for the regularization term H̃ in Eq. (2.7), which
includes the diagonal-exchange interaction J̃1 = J̃1(R(t)),
J̃2 = J̃2(R(t)), and J̃3 = J̃3(R(t)), the off-diagonal-exchange
interaction W̃1 = W̃1(R(t)), W̃2 = W̃2(R(t)), W̃3 = W̃3(R(t)),
and the three-component magnetic field B̃ = B̃(R(t)). The
candidate for the regularization Hamiltonian H̃ takes the form

H̃ = J̃1σ
x
1 σ x

2 + J̃2σ
y
1 σ

y
2 + J̃3σ

z
1 σ z

2 + W̃1
(
σ x

1 σ
y
2 + σ

y
1 σ x

2

)
+ W̃2

(
σ

y
1 σ z

2 + σ z
1 σ

y
2

)
+ W̃3

(
σ z

1 σ x
2 + σ x

1 σ z
2

)
+ 1

2 (σ 1 + σ 2) · B̃, (3.1)

where σ
x,y,z
1 and σ

x,y,z
2 represent Pauli matrices for two spins. The regularization Hamiltonian in Eq. (3.1) shows an expression

widely accepted in the context of magnetic materials. In Eq. (3.1) we suppressed the products of three or more Pauli matrices,
which do not exist in magnetic systems. Likewise we ignored the spin-independent term, which gives a deviation from Tr(H̃) = 0
and is not essential in thermodynamic properties. The regularization Hamiltonian including these extra terms not acceptable in
magnetic systems will not be investigated in the present paper. Arranging the bases as |↑↑⟩, |↑↓⟩, |↓↑⟩, and |↓↓⟩, we obtain the
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to its real part. The explicit expression for H̃ in Eq.(3.2)

greatly reduces the number of unknown {H̃
ij

} and helps

us to solve Eq.(2.7). As two-spin systems, we shall in-

vestigate: (A) a simple transverse Ising model; (B) a

minimum model for quantum annealing; (C) a model for

generation of entanglement. It should be noted: Our in-

terest in the model (B) lies in showing a variety of driving

fields or counter-diabatic terms for two-spin systems, and

more practical subjects, such as finding the ground state

of many-spin systems described by a very complicated

Hamiltonian and applying the fast-forward protocol to

accelerate the quantum adiabatic computation when the

final ground state is unknown, are outside of the scope

of the present work.

A. Simple transverse Ising model

First of all, we study a simple Ising transverse-field

model [21] where our scheme reproduces the state-

independent counter-diabatic terms obtained by the

method of transitionless quantum driving. The Hamil-

tonian is written as

H0 = J(R(t))�z

1�
z

2 � 1

2
(�x

1 + �x

2 )Bx

(R(t)) (3.3)

By using this bases : |""i, |"#i, |#"i, and |##i, we have

H0 =

0

BBB@

J �B

x

2 �B

x

2 0

�B

x

2 �J 0 �B

x

2

�B

x

2 0 �J �B

x

2

0 �B

x

2 �B

x

2 J

1

CCCA
(3.4)

where the eigenvalue : �J , J , �p
J2 +B2

x

, andp
J2 +B2

x

). The normalized eigenvector are respec-

tively:

0

BBB@

0

� 1p
2

1p
2

0

1

CCCA
,

0

BBB@

� 1p
2

0

0
1p
2

1

CCCA
,

0

BBBBBBBBB@

B

x

2
q

B

2
x

+J

2+J

p
B

2
x

+J

2p
B

2
x

+J

2+J

2
q

B

2
x

+J

2+J

p
B

2
x

+J

2p
B

2
x

+J

2+J

2
q

B

2
x

+J

2+J

p
B

2
x

+J

2

B

x

2
q

B

2
x

+J

2+J

p
B

2
x

+J

2

1

CCCCCCCCCA

, and

0

BBBBBBBBB@

B

x

2
q

B

2
x

+J

2�J

p
B

2
x

+J

2

�
p

B

2
x

+J

2+J

2
q

B

2
x

+J

2�J

p
B

2
x

+J

2

�
p

B

2
x

+J

2+J

2
q

B

2
x

+J

2�J

p
B

2
x

+J

2

B

x

2
q

B

2
x

+J

2�J

p
B

2
x

+J

2

1

CCCCCCCCCA

.

Let us focus on the 3rd state with the lowest energy

(�p
J2 +B2

x

), where C1 = C4 , C2 = C3, and C1, C2, C3

and C4 are real. From R-derivative of the normalization,

we see

@C2

@R
C2 +

@C4

@R
C4 = 0. (3.5)

Due to the symmetry C1 = C4 and C2 = C3, Eq.(2.7) for

the regularization terms reduces to

i~@C4

@R
= Ã1C4 + Ã2C2, (3.6)

i~@C2

@R
= Ã3C4 + Ã4C2,

where Ã1 = (H̃11 + H̃14), Ã2 = (H̃12 + H̃13), Ã3 =

(H̃21 + H̃24), and Ã4 = (H̃22 + H̃23).

To solve two-component simultaneous linear equations

for H̃
ij

in Eq.(3.6), we should note the symmetry in-

volved in the candidate for regularization H̃ in Eq.(3.2).

Then we can choose two independent real variables out

of nine real variables in Eq.(3.2). Among 9C2 = 9!
2!7!

choices, we should pick up the cases where 2 ⇥ 2 coe�-

cient matrix for the unknown {J̃ , W̃ , B̃} is regular and

each of two solutions is real. For example, there is a case

where J̃3, and W̃2 are independent real variables with

others zero, such that Eq.(3.6) can be reduced to

i~@C4

@R
= J̃3C4 � i2W̃2C2 (3.7)

i~@C2

@R
= i2W̃2C4 � J̃3C2.

Equation (3.7) has a solution:

J̃3 =
aC4 + bC2

C2
4 � C2

2

= 0 (3.8)

W̃2 =
i(aC2 + bC4)

2 (C2
2 � C2

4 )
, (3.9)

where a = i~@C4
@R

, b = i~@C2
@R

. Noting Eq.(3.5), we find

J̃3 = 0. We find that each solution consists of 2 real

variables with one given by W̃2 and the other one from 6

candidates (J̃1, J̃2, J̃3, W̃3, B̃x

, B̃
z

) responsible to the eal

part of H̃. Other 5 solutions are available as above, whose

expressions are

(B̃
x

= 0, W̃2 = i(aC4�bC2)
4C2C4

),

(B̃
z

= 0, W̃2 = - ib

2C4
),

(W̃3 = 0, W̃2 = - ib

2C4
),

(J̃1 = 0, W̃2 = i(aC2�bC4)

2(C2
2+C

2
4)

), and

(J̃2 = 0, W̃2 =
i(aC2+bC4)

2(C2
2�C

2
4)

). Using the explicit expressions

for C2, C4 and their derivatives, however, 6 solutions are

the same, having the identical the value

W̃2 =
�J @B

x

@R

+B
x

@J

@R

4 (B2
x

+ J2)
. (3.10)

(A)  Simple transverse Ising model
Reference Hamiltonian
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to its real part. The explicit expression for H̃ in Eq.(3.2)
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} and helps
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vestigate: (A) a simple transverse Ising model; (B) a

minimum model for quantum annealing; (C) a model for

generation of entanglement. It should be noted: Our in-

terest in the model (B) lies in showing a variety of driving
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more practical subjects, such as finding the ground state

of many-spin systems described by a very complicated

Hamiltonian and applying the fast-forward protocol to

accelerate the quantum adiabatic computation when the

final ground state is unknown, are outside of the scope

of the present work.

A. Simple transverse Ising model

First of all, we study a simple Ising transverse-field

model [21] where our scheme reproduces the state-

independent counter-diabatic terms obtained by the

method of transitionless quantum driving. The Hamil-

tonian is written as

H0 = J(R(t))�z

1�
z

2 � 1

2
(�x

1 + �x

2 )Bx

(R(t)) (3.3)

By using this bases : |""i, |"#i, |#"i, and |##i, we have

H0 =

0
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x

2 �B

x

2 0

�B

x

2 �J 0 �B

x
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2 0 �J �B

x

2

0 �B
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, andp
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x
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2
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q
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q
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+J
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q
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q
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q
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p
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q
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q
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Let us focus on the 3rd state with the lowest energy

(�p
J2 +B2

x

), where C1 = C4 , C2 = C3, and C1, C2, C3

and C4 are real. From R-derivative of the normalization,

we see

@C2

@R
C2 +

@C4

@R
C4 = 0. (3.5)

Due to the symmetry C1 = C4 and C2 = C3, Eq.(2.7) for

the regularization terms reduces to

i~@C4

@R
= Ã1C4 + Ã2C2, (3.6)

i~@C2

@R
= Ã3C4 + Ã4C2,

where Ã1 = (H̃11 + H̃14), Ã2 = (H̃12 + H̃13), Ã3 =

(H̃21 + H̃24), and Ã4 = (H̃22 + H̃23).

To solve two-component simultaneous linear equations

for H̃
ij

in Eq.(3.6), we should note the symmetry in-

volved in the candidate for regularization H̃ in Eq.(3.2).

Then we can choose two independent real variables out

of nine real variables in Eq.(3.2). Among 9C2 = 9!
2!7!

choices, we should pick up the cases where 2 ⇥ 2 coe�-

cient matrix for the unknown {J̃ , W̃ , B̃} is regular and

each of two solutions is real. For example, there is a case

where J̃3, and W̃2 are independent real variables with

others zero, such that Eq.(3.6) can be reduced to

i~@C4

@R
= J̃3C4 � i2W̃2C2 (3.7)

i~@C2

@R
= i2W̃2C4 � J̃3C2.

Equation (3.7) has a solution:

J̃3 =
aC4 + bC2

C2
4 � C2

2

= 0 (3.8)

W̃2 =
i(aC2 + bC4)

2 (C2
2 � C2

4 )
, (3.9)

where a = i~@C4
@R

, b = i~@C2
@R

. Noting Eq.(3.5), we find

J̃3 = 0. We find that each solution consists of 2 real

variables with one given by W̃2 and the other one from 6

candidates (J̃1, J̃2, J̃3, W̃3, B̃x

, B̃
z

) responsible to the eal

part of H̃. Other 5 solutions are available as above, whose

expressions are

(B̃
x

= 0, W̃2 = i(aC4�bC2)
4C2C4

),

(B̃
z

= 0, W̃2 = - ib

2C4
),

(W̃3 = 0, W̃2 = - ib

2C4
),

(J̃1 = 0, W̃2 = i(aC2�bC4)

2(C2
2+C

2
4)

), and

(J̃2 = 0, W̃2 =
i(aC2+bC4)

2(C2
2�C

2
4)

). Using the explicit expressions

for C2, C4 and their derivatives, however, 6 solutions are

the same, having the identical the value

W̃2 =
�J @B

x

@R

+B
x

@J

@R

4 (B2
x

+ J2)
. (3.10)

ground state



The ground state changes its 
nature from the product state 
(c1=c2=c3=c4=1/2) to entangled 
state(c2=c3=1/\sqrt(2), c1=c4=0), 
as Bx tends 0 and  J increases 
from 0.
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to its real part. The explicit expression for H̃ in Eq.(3.2)

greatly reduces the number of unknown {H̃
ij

} and helps

us to solve Eq.(2.7). As two-spin systems, we shall in-

vestigate: (A) a simple transverse Ising model; (B) a

minimum model for quantum annealing; (C) a model for

generation of entanglement. It should be noted: Our in-

terest in the model (B) lies in showing a variety of driving

fields or counter-diabatic terms for two-spin systems, and

more practical subjects, such as finding the ground state

of many-spin systems described by a very complicated

Hamiltonian and applying the fast-forward protocol to

accelerate the quantum adiabatic computation when the

final ground state is unknown, are outside of the scope

of the present work.

A. Simple transverse Ising model

First of all, we study a simple Ising transverse-field

model [21] where our scheme reproduces the state-

independent counter-diabatic terms obtained by the

method of transitionless quantum driving. The Hamil-

tonian is written as

H0 = J(R(t))�z
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Let us focus on the 3rd state with the lowest energy

(�p
J2 +B2

x

), where C1 = C4 , C2 = C3, and C1, C2, C3

and C4 are real. From R-derivative of the normalization,

we see

@C2

@R
C2 +

@C4

@R
C4 = 0. (3.5)

Due to the symmetry C1 = C4 and C2 = C3, Eq.(2.7) for

the regularization terms reduces to

i~@C4

@R
= Ã1C4 + Ã2C2, (3.6)

i~@C2

@R
= Ã3C4 + Ã4C2,

where Ã1 = (H̃11 + H̃14), Ã2 = (H̃12 + H̃13), Ã3 =

(H̃21 + H̃24), and Ã4 = (H̃22 + H̃23).

To solve two-component simultaneous linear equations

for H̃
ij

in Eq.(3.6), we should note the symmetry in-

volved in the candidate for regularization H̃ in Eq.(3.2).

Then we can choose two independent real variables out

of nine real variables in Eq.(3.2). Among 9C2 = 9!
2!7!

choices, we should pick up the cases where 2 ⇥ 2 coe�-

cient matrix for the unknown {J̃ , W̃ , B̃} is regular and

each of two solutions is real. For example, there is a case

where J̃3, and W̃2 are independent real variables with

others zero, such that Eq.(3.6) can be reduced to

i~@C4

@R
= J̃3C4 � i2W̃2C2 (3.7)

i~@C2

@R
= i2W̃2C4 � J̃3C2.

Equation (3.7) has a solution:

J̃3 =
aC4 + bC2

C2
4 � C2

2

= 0 (3.8)

W̃2 =
i(aC2 + bC4)

2 (C2
2 � C2

4 )
, (3.9)

where a = i~@C4
@R

, b = i~@C2
@R

. Noting Eq.(3.5), we find

J̃3 = 0. We find that each solution consists of 2 real

variables with one given by W̃2 and the other one from 6

candidates (J̃1, J̃2, J̃3, W̃3, B̃x

, B̃
z

) responsible to the eal

part of H̃. Other 5 solutions are available as above, whose

expressions are

(B̃
x

= 0, W̃2 = i(aC4�bC2)
4C2C4

),

(B̃
z

= 0, W̃2 = - ib

2C4
),

(W̃3 = 0, W̃2 = - ib

2C4
),

(J̃1 = 0, W̃2 = i(aC2�bC4)

2(C2
2+C

2
4)

), and

(J̃2 = 0, W̃2 =
i(aC2+bC4)

2(C2
2�C

2
4)

). Using the explicit expressions

for C2, C4 and their derivatives, however, 6 solutions are

the same, having the identical the value

W̃2 =
�J @B

x

@R

+B
x

@J

@R

4 (B2
x

+ J2)
. (3.10)



To solve two-component simultaneous liner 
equations, there are several possibilities of 
solutions. We pick up the cases  when the 
equation for unknown                  is regular.

SETIAWAN, EKA GUNARA, MASUDA, AND NAKAMURA PHYSICAL REVIEW A 96, 052106 (2017)

matrix form

H̃ =

⎛

⎜⎜⎜⎝

J̃3 + B̃z
1
2 (B̃x − iB̃y) − iW̃2 + W̃3

1
2 (B̃x − iB̃y) − iW̃2 + W̃3 J̃1 − J̃2 − i2W̃1

1
2 (B̃x + iB̃y) + iW̃2 + W̃3 −J̃3 J̃1 + J̃2

1
2 (B̃x − iB̃y) + iW̃2 − W̃3

1
2 (B̃x + iB̃y) + iW̃2 + W̃3 J̃1 + J̃2 −J̃3

1
2 (B̃x − iB̃y) + iW̃2 − W̃3

J̃1 − J̃2 + i2W̃1
1
2 (B̃x + iB̃y) − iW̃2 − W̃3

1
2 (B̃x + iB̃y) − iW̃2 − W̃3 J̃3 − B̃z

⎞

⎟⎟⎟⎠
.

(3.2)

We see that B̃y , W̃1, and W̃2 contribute to the imaginary part
of the matrix H̃, while J̃1, J̃2, J̃3, W̃3, B̃x , and B̃z contribute to
its real part. The explicit expression for H̃ in Eq. (3.2) greatly
reduces the number of unknown {H̃ij } and helps us to solve
Eq. (2.7). As two-spin systems we will investigate a simple
transverse Ising model (Sec. III A), a minimum model for
quantum annealing (Sec. III B), and a model for generation of
entanglement (Sec. III C).

A. Simple transverse Ising model

First of all, we study a simple Ising transverse-field model
[21] where our scheme reproduces the state-independent
counterdiabatic terms obtained by the method of transitionless
quantum driving. The Hamiltonian is written as

H0 = J (R(t))σ z
1 σ z

2 − 1
2

(
σ x

1 + σ x
2

)
Bx(R(t)). (3.3)

By using the bases |↑↑⟩, |↑↓⟩, |↓↑⟩, and |↓↓⟩, we have

H0 =

⎛

⎜⎜⎜⎝

J −Bx

2 −Bx

2 0

−Bx

2 −J 0 −Bx

2

−Bx

2 0 −J −Bx

2

0 −Bx

2 −Bx

2 J

⎞

⎟⎟⎟⎠
, (3.4)

with the eigenvalues −J , J , −
√

J 2 + B2
x , and

√
J 2 + B2

x . The
normalized eigenvector are, respectively,

⎛

⎜⎜⎜⎜⎝

0

− 1√
2

1√
2

0

⎞

⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎝

− 1√
2

0

0
1√
2

⎞

⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bx

2
√

B2
x+J 2+J

√
B2

x+J 2

√
B2

x+J 2+J

2
√

B2
x+J 2+J

√
B2

x+J 2

√
B2

x+J 2+J

2
√

B2
x+J 2+J

√
B2

x+J 2

Bx

2
√

B2
x+J 2+J

√
B2

x+J 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bx

2
√

B2
x+J 2−J

√
B2

x+J 2

−
√

B2
x+J 2+J

2
√

B2
x+J 2−J

√
B2

x+J 2

−
√

B2
x+J 2+J

2
√

B2
x+J 2−J

√
B2

x+J 2

Bx

2
√

B2
x+J 2−J

√
B2

x+J 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us focus on the ground state (the third state with the
lowest energy −

√
J 2 + B2

x ), where C1 = C4, C2 = C3, and
C1, C2, C3, and C4 are real. From the R derivative of the
normalization we see

∂C2

∂R
C2 + ∂C4

∂R
C4 = 0 (3.5)

and then the adiabatic phase ξ = 0. Due to the symmetry
C1 = C4 and C2 = C3 and noting the real nature of {J̃ ,W̃ ,B̃},
Eq. (2.7) for the regularization terms reduces to

ih̄
∂C4

∂R
= Ã1C4 + Ã2C2,

ih̄
∂C2

∂R
= Ã3C4 + Ã4C2, (3.6)

where Ã1 = H̃11 + H̃14 = J̃1 − J̃2 + J̃3, Ã2 = H̃12 + H̃13 =
B̃x − 2iW̃2, Ã3 = H̃21 + H̃24 = B̃x + 2iW̃2, and Ã4 =
H̃22 + H̃23 = J̃1 + J̃2 − J̃3.

To solve two-component simultaneous linear equations for
H̃ij in Eq. (3.6), we should choose two independent real
variables out of five real variables (J̃1, J̃2, J̃3, W̃2, and B̃x)
appearing in {Ãj }. Among 5C2 = 5!

2!3! choices, we should pick
the cases where the 2 × 2 coefficient matrix for the unknown
{J̃ ,W̃ ,B̃} is regular and each of the two solutions is real. For
example, there is a case where J̃3 and W̃2 are independent real
variables with others zero such that Eq. (3.6) can be reduced
to

ih̄
∂C4

∂R
= J̃3C4 − i2W̃2C2,

ih̄
∂C2

∂R
= i2W̃2C4 − J̃3C2. (3.7)

Equations (3.7) have the solution

J̃3 = aC4 + bC2

C2
4 − C2

2

= 0, (3.8)

W̃2 = i(aC2 + bC4)
2(C2

2 − C2
4 )

, (3.9)

where a = ih̄ ∂C4
∂R

and b = ih̄ ∂C2
∂R

. Noting Eq. (3.5), we find
J̃3 = 0.

052106-4
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to its real part. The explicit expression for H̃ in Eq.(3.2)

greatly reduces the number of unknown {H̃
ij

} and helps

us to solve Eq.(2.7). As two-spin systems, we shall in-

vestigate: (A) a simple transverse Ising model; (B) a

minimum model for quantum annealing; (C) a model for

generation of entanglement. It should be noted: Our in-

terest in the model (B) lies in showing a variety of driving

fields or counter-diabatic terms for two-spin systems, and

more practical subjects, such as finding the ground state

of many-spin systems described by a very complicated

Hamiltonian and applying the fast-forward protocol to

accelerate the quantum adiabatic computation when the

final ground state is unknown, are outside of the scope

of the present work.

A. Simple transverse Ising model

First of all, we study a simple Ising transverse-field

model [21] where our scheme reproduces the state-

independent counter-diabatic terms obtained by the

method of transitionless quantum driving. The Hamil-

tonian is written as

H0 = J(R(t))�z
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2
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2 )Bx
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Let us focus on the 3rd state with the lowest energy

(�p
J2 +B2

x

), where C1 = C4 , C2 = C3, and C1, C2, C3

and C4 are real. From R-derivative of the normalization,

we see

@C2

@R
C2 +

@C4

@R
C4 = 0. (3.5)

Due to the symmetry C1 = C4 and C2 = C3, Eq.(2.7) for

the regularization terms reduces to

i~@C4

@R
= Ã1C4 + Ã2C2, (3.6)

i~@C2

@R
= Ã3C4 + Ã4C2,

where Ã1 = (H̃11 + H̃14), Ã2 = (H̃12 + H̃13), Ã3 =

(H̃21 + H̃24), and Ã4 = (H̃22 + H̃23).

To solve two-component simultaneous linear equations

for H̃
ij

in Eq.(3.6), we should note the symmetry in-

volved in the candidate for regularization H̃ in Eq.(3.2).

Then we can choose two independent real variables out

of nine real variables in Eq.(3.2). Among 9C2 = 9!
2!7!

choices, we should pick up the cases where 2 ⇥ 2 coe�-

cient matrix for the unknown {J̃ , W̃ , B̃} is regular and

each of two solutions is real. For example, there is a case

where J̃3, and W̃2 are independent real variables with

others zero, such that Eq.(3.6) can be reduced to

i~@C4

@R
= J̃3C4 � i2W̃2C2 (3.7)

i~@C2

@R
= i2W̃2C4 � J̃3C2.

Equation (3.7) has a solution:

J̃3 =
aC4 + bC2

C2
4 � C2

2

= 0 (3.8)

W̃2 =
i(aC2 + bC4)

2 (C2
2 � C2

4 )
, (3.9)

where a = i~@C4
@R

, b = i~@C2
@R

. Noting Eq.(3.5), we find

J̃3 = 0. We find that each solution consists of 2 real

variables with one given by W̃2 and the other one from 6

candidates (J̃1, J̃2, J̃3, W̃3, B̃x

, B̃
z

) responsible to the eal

part of H̃. Other 5 solutions are available as above, whose

expressions are

(B̃
x

= 0, W̃2 = i(aC4�bC2)
4C2C4

),

(B̃
z

= 0, W̃2 = - ib

2C4
),

(W̃3 = 0, W̃2 = - ib

2C4
),

(J̃1 = 0, W̃2 = i(aC2�bC4)

2(C2
2+C

2
4)

), and

(J̃2 = 0, W̃2 =
i(aC2+bC4)

2(C2
2�C

2
4)

). Using the explicit expressions

for C2, C4 and their derivatives, however, 6 solutions are

the same, having the identical the value

W̃2 =
�J @B

x

@R

+B
x

@J

@R

4 (B2
x

+ J2)
. (3.10)
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to its real part. The explicit expression for H̃ in Eq.(3.2)
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generation of entanglement. It should be noted: Our in-

terest in the model (B) lies in showing a variety of driving
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of many-spin systems described by a very complicated

Hamiltonian and applying the fast-forward protocol to
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of the present work.
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x

2
q

B

2
x

+J

2+J

p
B

2
x

+J

2p
B

2
x

+J

2+J

2
q

B

2
x

+J

2+J

p
B

2
x

+J

2p
B

2
x

+J

2+J

2
q

B

2
x

+J

2+J

p
B

2
x

+J

2

B

x

2
q

B

2
x

+J

2+J

p
B

2
x

+J

2

1

CCCCCCCCCA

, and

0

BBBBBBBBB@

B

x

2
q

B

2
x

+J

2�J

p
B

2
x

+J

2

�
p

B

2
x

+J

2+J

2
q

B

2
x

+J

2�J

p
B

2
x

+J

2

�
p

B

2
x

+J

2+J

2
q

B

2
x

+J

2�J

p
B

2
x

+J

2

B

x

2
q

B

2
x

+J

2�J

p
B

2
x

+J

2

1

CCCCCCCCCA

.

Let us focus on the 3rd state with the lowest energy

(�p
J2 +B2

x

), where C1 = C4 , C2 = C3, and C1, C2, C3

and C4 are real. From R-derivative of the normalization,

we see

@C2

@R
C2 +

@C4

@R
C4 = 0. (3.5)

Due to the symmetry C1 = C4 and C2 = C3, Eq.(2.7) for

the regularization terms reduces to

i~@C4

@R
= Ã1C4 + Ã2C2, (3.6)

i~@C2

@R
= Ã3C4 + Ã4C2,

where Ã1 = (H̃11 + H̃14), Ã2 = (H̃12 + H̃13), Ã3 =

(H̃21 + H̃24), and Ã4 = (H̃22 + H̃23).

To solve two-component simultaneous linear equations

for H̃
ij

in Eq.(3.6), we should note the symmetry in-

volved in the candidate for regularization H̃ in Eq.(3.2).

Then we can choose two independent real variables out

of nine real variables in Eq.(3.2). Among 9C2 = 9!
2!7!

choices, we should pick up the cases where 2 ⇥ 2 coe�-

cient matrix for the unknown {J̃ , W̃ , B̃} is regular and

each of two solutions is real. For example, there is a case

where J̃3, and W̃2 are independent real variables with

others zero, such that Eq.(3.6) can be reduced to

i~@C4

@R
= J̃3C4 � i2W̃2C2 (3.7)

i~@C2

@R
= i2W̃2C4 � J̃3C2.

Equation (3.7) has a solution:

J̃3 =
aC4 + bC2

C2
4 � C2

2

= 0 (3.8)

W̃2 =
i(aC2 + bC4)

2 (C2
2 � C2

4 )
, (3.9)

where a = i~@C4
@R

, b = i~@C2
@R

. Noting Eq.(3.5), we find

J̃3 = 0. We find that each solution consists of 2 real

variables with one given by W̃2 and the other one from 6

candidates (J̃1, J̃2, J̃3, W̃3, B̃x

, B̃
z

) responsible to the eal

part of H̃. Other 5 solutions are available as above, whose

expressions are

(B̃
x

= 0, W̃2 = i(aC4�bC2)
4C2C4

),

(B̃
z

= 0, W̃2 = - ib

2C4
),

(W̃3 = 0, W̃2 = - ib

2C4
),

(J̃1 = 0, W̃2 = i(aC2�bC4)

2(C2
2+C

2
4)

), and

(J̃2 = 0, W̃2 =
i(aC2+bC4)

2(C2
2�C

2
4)

). Using the explicit expressions

for C2, C4 and their derivatives, however, 6 solutions are

the same, having the identical the value

W̃2 =
�J @B

x

@R

+B
x

@J

@R

4 (B2
x

+ J2)
. (3.10)

To be explicit,
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The state-dependent counter-diabatic terms and the fast

forward Hamiltonian are written respectively as

H =

0

BBB@

0 �iv(t)W̃2 �iv(t)W̃2 0

iv(t)W̃2 0 0 iv(t)W̃2

iv(t)W̃2 0 0 iv(t)W̃2

0 �iv(t)W̃2 �iv(t)W̃2 0

1

CCCA
,

(3.11)

H
FF

= J(R(⇤(t)))�z

1�
z

2 � 1

2
(�x

1 + �x

2 )Bx

(R(⇤(t)))

+ v(t)W̃2(R(⇤(t)))(�y

1�
z

2 + �z

1�
y

2 ). (3.12)

Choosing another eigenstate corresponding to the

highest eigenvalue
p
J2 +B2

x

below Eq. (3.4), we

can reproduce the regularization term in Eq.(3.10)

and the counter-diabatic term in Eq.(3.11), and there-

fore these terms are state-independent. By applying

Demirplak-Rice-Berry formula in Eq.(2.19), on the other

hand, Opatrnỳ and Mølmer [21] obtained the state-

independent counter-diabatic terms H which agrees with

Eq.(3.11). In fact, using the polar coordinate J = ⇢ sin�

and B
x

= ⇢ cos�, Eq.(3.10) reduce to 1
4

@�

@R

, and therefore

the counter-diabatic term is described by W2 = dR

dt

W̃2

= 1
4 �̇ [21].

B. Quantum annealing model

The spin analogue of the quantum annealing was pro-

posed by Kadowaki and Nishimori [22], and has received

a wide attention in the context of quantum computing

[23]. The Hamiltonian is written as

H0 = �J�z

1�
z

2 �
1

2
(�z

1 + �z

2)Bz

� 1

2
(�x

1 + �x

2 )Bx

, (3.13)

where J and B
z

are positive constants, and B
x

=

B
x

(R(t)) plays the role of tunneling among spin up and

down states. By decreasing B
x

from a large positive value

towards 0, the entangled state tends to the ground state

of the Ising model. Arranging the bases as |""i, |"#i,
|#"i, and |##i, we obtain

H0 =

0

BBB@

�J �B
z

�B

x

2 �B

x

2 0

�B

x

2 J 0 �B

x

2

�B

x

2 0 J �B

x

2

0 �B

x

2 �B

x

2 �J +B
z

1

CCCA
. (3.14)

The eigenvalues are

�1 = J, (3.15)

�2 = �J

3
+ � + �̄, (3.16)

�3 = �J

3
� 1

2
(� + �̄)� i

p
3

2
(�̄ � �), (3.17)

and

�4 = �J

3
� 1

2
(� + �̄) +

i
p
3

2
(�̄ � �), (3.18)

where

� =
3

rq
�2
� � �3

+ + ��,

�+ =
B2

x

3
+

B2
z

3
+

4J2

9
,

�� =
B2

x

J

3
� 2B2

z

J

3
+

8J3

27
. (3.19)

All eigenvalues above are real. The eigenvector for the

ground state (�3) is

C1 = ⇣

✓
�B2

x

� 2B
z

J + 2J2

B2
x

+
2B

z

�

B2
x

+
2�2

B2
x

◆
,

C2 = ⇣

✓
B

z

� J

B
x

+
�

B
x

◆
,

C3 = ⇣

✓
B

z

� J

B
x

+
�

B
x

◆
,

C4 = ⇣, (3.20)

where

� =
1

2
i
p
3(�̄ � �) +

1

2
(� + �̄) +

J

3
, (3.21)

and ⇣ is normalization factor written as

⇣ =
1r⇣

�B

2
x

�2B
z

J+2J2

B

2
x

+ 2B
z

�
B

2
x

+ 2�2

B

2
x

⌘2
+ 2

⇣
B

z

�J

B

x

+ �
B

x

⌘2
+ 1

.

(3.22)

We shall concentrate on the fast forward of the quasi-

adiabatic dynamics of the ground state with the eigen-

value �3. From the eigenvector we see, C2 = C3, and

C1, C2, C3, and C4 are real. From the normalization

(C2
1 + 2C2

2 + C2
4 = 1), we see

C1
@C1

@R
+ 2C2

@C2

@R
+ C4

@C4

@R
= 0, (3.23)

and then adiabatic phase (⇠) is equal to 0. Because of the

symmetry (C3 = C2), the equation for the regularization

Driving and  and fast-forward 
Hamiltonians
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Here v(t) is a velocity function available from ↵(t) in the

asymptotic limit:

v(t) = lim
✏!0,↵!1

✏↵(t) (2.14)

= v̄

✓
1� cos

2⇡

T
FF

t

◆
,

where v̄ = lim
✏!0,↵!1 ✏↵̄(= finite) is the mean of v(t).

Consequently

R(⇤(t)) = R0 + lim
✏!0,↵̄!1

"⇤(t)

= R0 +

Z
t

0
v(t0)dt0

= R0 + v̄


t� T

FF

2⇡
sin

✓
2⇡

T
FF

t

◆�
,

for 0  t  T
FF

. (2.15)

H
FF

is the driving Hamiltonian and H̃
n

is the regular-

ization term obtained from Eq.(2.7) to generate the fast-

forward scheme in spin system.

There is a relation between H̃
n

in Eq.(2.7) and

Demirplak-Rice-Berry’s counter-diabatic termH [5–7]. If

there is an n-independent regularization term H̃ among

{H̃
n

}, we define H ⌘ v(t)H̃(R(⇤(t))) with use of v(t) =
@R(⇤(t))

@t

. Then Eq.(2.7) becomes

H 0 = i~ @

@t
 0 � i~

NX

j=1

C⇤
j

@C
j

@t
 0, (2.16)

which can be rewritten as

H|ni = i~ @

@t
|ni � i~|nihn| @

@t
|ni, (2.17)

where |ni means the n-th eigenstate of the Hamiltonian

in Eq.(2.1). Operating both side of Eq.(2.17) on hn|, and
summing over n, we have

H
X

n

|nihn| = i~
X

n

@

@t
|nihn|� i~

X

n

|nihn| @
@t

|nihn|.
(2.18)

Noting the completeness condition for the eigenstates :P
n

|nihn| = 1, we have

H = i~
X

n

✓
@

@t
|nihn|� |nihn| @

@t
|nihn|

◆
, (2.19)

which agrees with Demirplak-Rice-Berry’s formula.

Therefore v(t)H̃(R(⇤(t))) corresponds to the counter-

diabatic term. Using this correspondence, one may call

v(t)H̃
n

(R(⇤(t))) as a state-dependent counter-diabatic

term. Hereafter we shall be concerned with the fast for-

ward of adiabatic dynamics of one of the adiabatic states

(e.g., the ground state), and thereby the su�x n in H̃
n

will be suppressed.

Note: Demirplak-Rice-Berry(DRB)’s counter-

diabatic(CD) term is state-independent by nature,

and can also be reproduced by the inverse engineering

[26] based on the Lewis-Riesenfeld’s invariant theory [8].

Inspired by the works [12, 27] on a streamlined version

of the fast-forward method, Patra and Jarzynski [28]

proposed a framework for constructing STA from the

velocity and acceleration flow field which characterizes

the adiabatic evolution, providing compact expressions

for both CD term and fast-forward potentials. Since

the flow field is uniquely defined using each adiabatic

eigenstate, there appears only one state-dependent

CD term, which is not equivalent to DRB’s CD term,

although the equivalence will be recovered if two kind of

CD terms will be projected onto each of adiabatic states.

By contrast, our formalism here can generate plural

number of sate-dependent CD terms for each adiabatic

state, which can include a state-independent one.

Now we investigate a single spin system in our scheme,

and show the fast forward of adiabatic dynamics in

Landau-Zener (LZ) model [29, 30]. We consider a mag-

netic field :

B(t) =

0

B@
�

0

R(t)

1

CA , (2.20)

where � is a constant. The Hamiltonian is given by

H0(R(t)) =
1

2
� ·B =

1

2

 
R(t) �

� �R(t)

!
(2.21)

with the eigenvalues �± = ±
p
R

2+�2

2 and eigenstates

 ±
0 =

 
C±

1

C±
2

!
=

 
��/s±

R⌥
p
R

2+�2

s±

!
, (2.22)

where

s± ⌘
h
2
p

R2 +�2
⇣p

R2 +�2 ⌥R
⌘i1/2

. (2.23)

Now we choose one of the states with �+ and  +
0 , and

consider the adiabatic dynamics where R = R0+ ✏t. The

adiabatically evolving state is :

 0(t) =

 
� �

s+

R�
p
R

2+�2

s+

!
e�

i

~
R

t

0

p
R

2+�2

2 dt

0
e⇠(t). (2.24)

Noting that H̃
ij

is traceless (H̃11 = - H̃22) and Hermitian

(H̃⇤
21 =H̃12), Eq.(2.7) constitutes a rank = 2 linear alge-

braic equation for two unknowns (H̃11 and H̃12). With

The adiabatic parameter R changes by the value 
    TFF (~O(R0)) in an arbitrary short time TFF.
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For nonadiabatic processes, !0(R(t)) in Eq. (2.2) does not
satisfy the time-dependent Schrödinger equation (TDSE) and
in order to impose it as the solution of the TDSE, the
Hamiltonian must be regularized as

H
reg
0 (R(t)) = H0(R(t)) + ϵH̃n(R(t)). (2.4)

Then the TDSE becomes

ih̄
∂

∂t
!0(R(t)) = (H0 + ϵH̃n)!0(R(t)). (2.5)

Here H̃n is the nth state-dependent regularization term [2].
Substituting !0(R(t)) in Eq. (2.2) into the above TDSE, we
obtain

ih̄

(
ϵ∂RC − i

h̄
EC − ϵ(C†∂RC)C

)
= H0C + ϵH̃nC,

C ≡

⎛

⎜⎝
C1(R)

...
CN (R)

⎞

⎟⎠. (2.6)

While the O(ϵ0) in the above equality gives the adiabatic
eigenvalue problem in Eq. (2.1), the O(ϵ1) leads to

H̃n

⎛

⎜⎝
C1(R)

...
CN (R)

⎞

⎟⎠ = ih̄

⎛

⎜⎝

∂C1(R)
∂R
...

∂CN (R)
∂R

⎞

⎟⎠

−ih̄

⎛

⎝
N∑

j=1

C∗
j

∂Cj

∂R

⎞

⎠

⎛

⎜⎝
C1(R)

...
CN (R)

⎞

⎟⎠, (2.7)

which is the core equation of the present paper.
The fast-forward state is defined by

!FF (t) =

⎛

⎜⎝
C1(R($(t)))

...
CN (R($(t)))

⎞

⎟⎠ exp
(

− i

h̄

∫ t

0
E((R($(t ′))))dt ′

)

× eiξ (R($(t))), (2.8)

where $(t) is an advanced time defined by

$(t) =
∫ t

0
α(t ′)dt ′, (2.9)

with the standard time t . Here α(t) is a magnification time-
scale factor given by α(0) = 1, α(t) > 1 (0 < t < TFF), and
α(t) = 1 (t ! TFF). We consider the fast-forward dynamics
that reproduces the target state !0(T ) in a shorter final time
TFF defined by

T =
∫ TFF

0
α(t)dt. (2.10)

The explicit expression for α(t) in the fast-forward range
(0 " t " TFF) is typically given [2] as

α(t) = ᾱ − (ᾱ − 1) cos
(

2π

TFF
t

)
, (2.11)

where ᾱ is the mean value of α(t) and is given by ᾱ = T/TFF.
We now take the strategy that a product of the mean

value ᾱ of an infinitely large time-scaling factor α(t) and

an infinitesimally small growth rate ϵ in the quasiadiabatic
parameter should satisfy the constraint that ᾱ · ϵ is finite in the
asymptotic limit ᾱ → ∞ and ϵ → 0. Then, by taking the time
derivative of !FF in Eq. (2.8) and using Eqs. (2.1) and (2.7),
we find (see the Appendix for details)

ih̄
∂!FF

∂t
= H0(R($(t)) + v(t)H̃n(R($(t)))!FF

≡ HFF!FF. (2.12)

Here v(t) is a velocity function available from α(t) in the
asymptotic limit

v(t) = lim
ϵ→0,α→∞

ϵα(t)

= v̄

(
1 − cos

2π

TFF
t

)
, (2.13)

where v̄ = limϵ→0,α→∞ ϵᾱ (finite) is the mean of v(t). Conse-
quently, for 0 " t " TFF,

R($(t)) = R0 + lim
ϵ→0,ᾱ→∞

ε$(t)

= R0 +
∫ t

0
v(t ′)dt ′

= R0 + v̄

[
t − TFF

2π
sin

(
2π

TFF
t

)]
. (2.14)

In Eq. (2.12), HFF is the driving Hamiltonian and H̃n is the
regularization term obtained from Eq. (2.7) to generate the
fast-forward scheme in spin systems.

There is a relation between H̃n in Eq. (2.7) and the
Demirplak-Rice-Berry counterdiabatic term H [5–7]. If there
is an n-independent regularization term H̃ among {H̃n}, we
define H ≡ v(t)H̃(R($(t))) with use of v(t) = ∂R($(t))

∂t
. Then

Eq. (2.7) becomes

HC = ih̄∂tC − ih̄(C†∂tC)C, (2.15)

which can be rewritten as

H|n⟩ = ih̄
∂

∂t
|n⟩ − ih̄|n⟩⟨n| ∂

∂t
|n⟩, (2.16)

where |n⟩ means the nth eigenstate of the Hamiltonian in
Eq. (2.1). Operating both sides of Eq. (2.16) on ⟨n| and
summing over n, we have

H
∑

n

|n⟩⟨n| = ih̄
∑

n

∂

∂t
|n⟩⟨n| − ih̄

∑

n

|n⟩⟨n| ∂

∂t
|n⟩⟨n|.

(2.17)

Noting the completeness condition for the eigenstates∑
n |n⟩⟨n| = 1, we have

H = ih̄
∑

n

(
∂

∂t
|n⟩⟨n| − |n⟩⟨n| ∂

∂t
|n⟩⟨n|

)
, (2.18)

which agrees with the Demirplak-Rice-Berry formula. There-
fore, v(t)H̃(R($(t))) corresponds to the counterdiabatic term.
Using this correspondence, one may call v(t)H̃n(R($(t))) a
state-dependent counterdiabatic term. Hereafter we will be
concerned with the fast forward of the adiabatic dynamics of
one of the adiabatic states (e.g., the ground state) and thereby
the suffix n in H̃n will be suppressed.
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In this example, FF dynamics generates the 
entangled (Bell) state from the initial product 
state, quickly, and not adiabatically, leaving 
neither residual oscillations nor disturbances.

c1=c2=c3=c4=1/2 c2=c3=1/\sqrt(2), c1=c4=0



(B) Model for generation of entangled state
9

by:

H0 = J�z

1�
z

2 +
1

2
(�1 + �2) ·B, (3.27)

which can generate an entangled state from the prod-

uct state. In Eq.(3.27) B = (B
x

, B
y

, B
z

) with B
z

=

B
z

(R(t)). B
x

, B
y

and J are assumed constants. Arrang-

ing the bases as |""i, |"#i, |#"i, and |##i, we obtain

H0 =

0

BBB@

J +B
z

B

x

2 � iBy

2
B

x

2 � iBy

2 0
B

x

2 + iBy

2 �J 0 B

x

2 � iBy

2
B

x

2 + iBy

2 0 �J B

x

2 � iBy

2

0 B

x

2 + iBy

2
B

x

2 + iBy

2 J �B
z

1

CCCA
.

(3.28)

The eigenvalues are

�1 = J,

�2 = � + �̄ +
J

3
,

�3 = �1

2

p
3i(� � �̄)� 1

2
(� + �̄) +

J

3
,

�4 =
1

2

p
3i(� � �̄)� 1

2
(� + �̄) +

J

3
, (3.29)

where

� =
3

rq
�2
� � �3

+ + �� ,

�+ =
B2

z

3
+

4|Z|2
3

+
4J2

9
,

�� =
2B2

z

J

3
� 4J |Z|2

3
� 8J3

27
. (3.30)

All eigenvalues above are real. The eigenvector for the

ground state (with the eigenvalue �4) is

C1 =
⇣
�
B

z

�� ��B
z

J + 2|Z|2 + J2
�
+ �2

�

2 (Z⇤)2
,

C2 =
⇣(B

z

+ �� J)

2Z⇤ ,

C3 =
⇣(B

z

+ �� J)

2Z⇤ ,

C4 = ⇣, (3.31)

with Z = 1
2 (Bx

� iB
y

), and

� =
1

2

p
3i(� � �̄)� 1

2
(� + �̄) +

J

3
. (3.32)

⇣ is normalization factor given by

⇣ =
1r⇣

B

z

��(�B

z

J+2|Z|2+J

2)+�2

2|Z|2

⌘2
+ 2

⇣
B

z

+��J

2|Z|

⌘2
+ 1

.

(3.33)

We shall concentrate on the fast forward of the quasi-

adiabatic dynamics of the ground state with the eigen-

value �4. From the eigenvector we see, C2 = C3, and C1,

C2, C3, C4 are complex. Again noting the fact that H̃21

= H̃31, H̃24 = H̃34 and H̃22 + H̃23 = H̃32 +H̃33, Eq.(2.7)

becomes three independent equations :

i~(@C1

@R
� LC1) = H̃11C1 + Ã1C2 + H̃14C4,

i~(@C2

@R
� LC2) = H̃21C1 + Ã2C2 + H̃24C4,

i~(@C4

@R
� LC4) = H̃41C1 + Ã4C2 + H̃44C4,

(3.34)

where Ã1 = H̃12 + H̃13, Ã2 = H̃22 + H̃23, Ã4 = H̃42 +

H̃43, and

L = C⇤
1
@C1

@R
+ 2C⇤

2
@C2

@R
+ C⇤

4
@C4

@R
. (3.35)

We shall take a similar procedure as in the previous sub-

Sections: To solve the ternary simultaneous linear equa-

tions for {H̃
ij

} in Eq. (3.34), we should choose three

independent real variables out of nine real variables in

Eq.(3.2). Then only the cases should be picked up where

3⇥3 coe�cient matrix for the unknown {J̃ , W̃ , B̃} is reg-

ular and each of three solutions are real. There exists a

choice where W̃3, B̃y

, and W̃1 are independent real vari-

ables with others zero. Then Eq.(3.34) can be cast into

the form

i~@C1

@R
� LC1 = (�iB̃

y

+ 2W̃3)C2 � 2iW̃1C4,

i~@C2

@R
� LC2 = (iB̃

y

+ W̃3)C1 + (�iB̃
y

� W̃3)C4,

i~@C4

@R
� LC4 = 2iW̃1C1 + (iB̃

y

� 2W̃3)C2. (3.36)

Solving Eq.(3.36), we obtain

W̃3 =
aC1 + 2bC2 + cC4

4C2 (C1 � C4)
,

B̃
y

= � i (�aC1 + 2bC2 � cC4)

2C2 (C1 � C4)
,

W̃1 = � i(a+ c)

2 (C1 � C4)
, (3.37)

where a = i(@C1
@R

� LC1), b = i(@C2
@R

� LC2), and

c = i(@C4
@R

� LC4). The regularization term and the fast

forward Hamiltonian are respectively written as



As Bz decreases from zero to some 
negative value, the ground state changes 
from the product state (c4=1, 
c1=c2=c3=0) to the entangled one 
(c1=c4=0, c2=c3=1/\sqrt(2)).
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terms H̃ in Eq. (2.7) are written as

ih̄
∂C1

∂R
= H̃11C1 + (H̃12 + H̃13)C2 + H̃14C4,

ih̄
∂C2

∂R
= H̃21C1 + (H̃22 + H̃23)C2 + H̃24C4,

ih̄
∂C2

∂R
= H̃31C1 + (H̃32 + H̃33)C2 + H̃34C4,

ih̄
∂C4

∂R
= H̃41C1 + (H̃42 + H̃43)C2 + H̃44C4. (3.21)

Noting that H̃21 = H̃31, H̃24 = H̃34, and H̃22 + H̃23 = H̃32 +
H̃33, we find that the second and third lines are degenerate.
Then the independent equations (3.21) reduce to

ih̄
∂C1

∂R
= H̃11C1 + Ã1C2 + H̃14C4,

ih̄
∂C2

∂R
= H̃21C1 + Ã2C2 + H̃24C4,

ih̄
∂C4

∂R
= H̃41C1 + Ã4C2 + H̃44C4, (3.22)

where Ã1 ≡ H̃12 + H̃13, Ã2 ≡ H̃22 + H̃23, and Ã4 ≡ H̃42 +
H̃43.

To solve the ternary simultaneous linear equations for {H̃ij }
in Eqs. (3.22), we should note the nature of H̃ as the candidate
for regularization terms in Eq. (3.2), which is Hermitian and
traceless and has other symmetries. This setup implies that we
can choose three independent real variables out of nine real
variables in Eq. (3.2). Among 9C3 = 9!

3!6! choices, however,
we should pick up only the cases where the 3 × 3 coefficient
matrix for the unknown {J̃ ,W̃ ,B̃} is regular and each of three
solutions is real. For example, there is a choice where B̃z, B̃y ,
and W̃2 are independent real variables with others zero such
that Eqs. (3.22) can simply be rewritten as

ih̄
∂C1

∂R
= B̃zC1 − i(B̃y + 2W̃2)C2,

ih̄
∂C2

∂R
= i

(
B̃y

2
+ W̃2

)
C1 + i

(
W̃2 − B̃y

2

)
C4,

ih̄
∂C4

∂R
= i(B̃y − 2W̃2)C2 − B̃zC4. (3.23)

Then solving Eqs. (3.23), we obtain

B̃z = aC1 + 2bC2 + cC4

(C1 − C4)(C1 + C4)
= 0,

B̃y = − i(aC4 + 2bC2 + cC1)
2C2(C1 − C4)

,

W̃2 = − i(−aC4 + 2bC2 − cC1)
4C2(C1 + C4)

, (3.24)

where a = ih̄ ∂C1
∂R

, b = ih̄ ∂C2
∂R

, and c = ih̄ ∂C4
∂R

; W̃2 is respon-
sible for (σ y

1 σ z
2 + σ z

1 σ
y
2 ). Noting Eq. (3.20), we find B̃z = 0.

The regularization terms and the fast-forward Hamiltonian are

written, respectively, as

H̃ =

⎛

⎜⎜⎜⎜⎜⎝

0 −i
B̃y

2 − iW̃2 −i
B̃y

2 − iW̃2 0

i
B̃y

2 + iW̃2 0 0 −i
B̃y

2 + iW̃2

i
B̃y

2 + iW̃2 0 0 −i
B̃y

2 + iW̃2

0 i
B̃y

2 − iW̃2 i
B̃y

2 − iW̃2 0

⎞

⎟⎟⎟⎟⎟⎠

(3.25)
and

HFF = −Jσ z
1 σ z

2 − 1
2

(
σ z

1 + σ z
2

)
Bz

− 1
2

(
σ x

1 + σ x
2

)
Bx(R(#(t)))

+ v(t)W̃2(R(#(t)))
(
σ

y
1 σ z

2 + σ z
1 σ

y
2

)

+ 1
2

(
σ

y
1 + σ

y
2

)
v(t)B̃y(R(#(t))), (3.26)

where h̄ = 1.
We find that each solution consists of three real variables,

of which two come from three candidates B̃y , W̃1, and W̃2

responsible for the imaginary part of H̃ in Eq. (3.2) and
one comes from six candidates responsible for its real part.
Therefore, the total number of solutions is 3C2 ×6 C1 = 18.
The other 17 solutions of Eqs. (3.22) are also available as
above. All 18 solutions are listed in Table I, which, multiplied
by v(t), are counterdiabatic terms proper to the ground-state
eigenvector in Eqs. (3.17).

Using the explicit expressions for C1, C2, and C4 in
Eqs. (3.17) and their derivatives, however, 18 solutions have
proved to be classified into three groups: In the first group,
(B̃y,W̃2) has the same nonzero values with others zero. Sim-
ilarly, in the second and third groups, (B̃y,W̃1) and (W̃1,W̃2)
play such a role, respectively. To conclude, we have three inde-
pendent counterdiabatic terms, whose time dependence, such
as (W2,By) = (v(t)W̃2(R(#(t))),v(t)B̃y(R(#(t)))), is shown
in Fig. 1.

In the fast-forward Hamiltonian HFF in Eq. (3.26), the time
dependence of the counterdiabatic term is explicitly shown in
Fig. 1(a). Then we numerically solve the TDSE in Eq. (2.12)
in the case of v(t) in Eq. (2.13) and R(#(t)) in Eq. (2.14).
Here we set J = 1, Bz = 0.1, Bx = B0 − R(#(t)), B0 =
10(R0 = 0), v̄ = 100, and TFF = 0.1. The initial state is a linear
combination of |↑↑⟩, |↑↓⟩, |↓↑⟩, and |↓↓⟩ states and as Bx is
decreased the system falls into the nonentangled (product)
state |↑↑⟩. Figure 2 shows that the initial entangled state
(C1 = 0.5300, C2 = 0.4744, C3 = 0.4744, and C4 = 0.5184)
rapidly changes to the product state |↑↑⟩, i.e., the ground state
of the Ising model. Figure 2(a) is the result of the TDSE and
exactly agrees with the time dependence of the eigenstate in
Eqs. (3.17), depicted in Fig. 2(b). The time-dependent fidelity
of the wave-function solution $FF(t) of the TDSE in Eq. (2.12)
to the eigenfunction $0(R(#(t))) in Eq. (2.2) is defined
by |$†

FF(t)$0(R(#(t)))| = |
∑4

j=1 C∗
FF,j (t)Cj (R(#(t)))| in the

case of N = 4. Concerning Figs. 2(a) and 2(b), we numerically
confirmed the fidelity equal to 1 − ϵ with 0 ! ϵ ! 10−6 during
the fast-forward time range 0 ! t ! TFF. In the case of the
other two solutions whose counterdiabatic interactions are
shown in Figs. 1(b) and 1(c), we also investigated the TDSE
numerically and confirmed the same high fidelity of wave
functions as in the case of Fig. 2.
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H̃ =

0

BBB@

0 �iB̃
y

+ W̃3 �iB̃
y

+ W̃3 �2iW̃1

iB̃
y

+ W̃3 0 0 �iB̃
y

� W̃3

iB̃
y

+ W̃3 0 0 �iB̃
y

� W̃3

2iW̃1 iB̃
y

� W̃3 iB̃
y

� W̃3 0

1

CCCA
, (3.38)

H
FF

= J�z

1�
z

2 +
1

2
(�1 + �2) ·B

+ v(t)W̃1(R(⇤(t)))(�x

1�
y

2 + �y

1�
x

2 ) + v(t)W̃3(R(⇤(t)))(�z

1�
x

2 + �x

1�
z

2) +
1

2
(�y

1 + �y

2 )v(t)B̃y

(R(⇤(t))),

(3.39)

where B = (B
x

, B
y

, B
z

(R(⇤(t)))).

In the model for generation of entangled states, we

find only two solutions available. Another solution for

the regularization term is:

B̃
x

=
aC1 + 2bC2 + cC4

2C2 (C1 + C4)
,

W̃2 = � i (�aC1 + 2bC2 � cC4)

4C2 (C1 + C4)
,

W̃1 =
i(a� c)

2 (C1 + C4)
. (3.40)

The dynamics of (W̃3, B̃y

, W̃1) in Eq.(3.37) and

(B̃
x

, W̃2, W̃1) in Eq.(3.40) multiplied by v(t) are shown

in Fig.3 (a) and (b), respectively.

In the case of the solution in Eq.(3.37) whose behavior

is shown in Fig.3(a), we numerically solve TDSE in Eq.

(2.12) with H
FF

in Eq. (3.39) in the case of v(t) in

Eq.(2.13) and R(⇤(t)) in Eq.(2.14). Putting J = 4(B2
x

+

B2
y

), B
x

= 1, B
y

= 1, B
z

= B0 �R(⇤(t)), B0 = 25(R0 =

0), v̄ = 250, T
FF

= 0.1, we see in Fig.4(a) the dynamics

shows a change from a nonentangled state at t = 0 where

only C4 appears to the entangled state at t = T
FF

where

only C2 and C3 appear. In fact the initial product state

(C4 = 1, C2 = C3 = C1 = 0) rapidly changes to the

entangled state (C1 = C4 = 0, C2 = C3 = 1p
2
).

Figure 4(a) is exactly the same as the temporal

change of the ground state defined in Eq.(3.31) shown in

Fig.4(b). We numerically evaluated the time-dependent

fidelity of the wavefunction solution  
FF

to the eigen-

function  0, and found the fidelity= 1� ✏ with 0  ✏ 
10�6.

In the case of another solution in Eq.(3.40), we also

investigated TDSE numerically, and confirmed the same

high fidelity of wavefunction as in the case of Fig.3. Two

solutions in Eqs.(3.37) and (3.40), multiplied by v(t), are

(a)

(b)

FIG. 3: Time dependence of 2 solutions for the state-

dependent counter-diabatic interactions: (a) B
y

(t) =

v(t)B̃
y

(R(⇤(t))) (solid line), W1(t) = v(t)W̃1(R(⇤(t)))

(dotted line), and W3(t) = v(t)W̃3(R(⇤(t))) (dashed

line); (b) B
x

(t) = v(t)B̃
x

(R(⇤(t))) (solid line), W1(t) =

v(t)W̃1(R(⇤(t))) (dotted line), and W2(t) = v(t)W̃2(R(⇤(t)))

(dashed line).

counter-diabatic terms proper to the particular eigenvec-

tor in Eq.(3.29).

We further solved Eq. (2.7) with use of the guiding

Hamiltonian in Eq.(3.1) in the cases of other three eigen-

vectors. However, we could not see the state-independent

counter-diabatic term. Therefore, in the model for gener-

2 independent 
counter-
diabatic terms
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tor in Eq.(3.29).

We further solved Eq. (2.7) with use of the guiding

Hamiltonian in Eq.(3.1) in the cases of other three eigen-

vectors. However, we could not see the state-independent

counter-diabatic term. Therefore, in the model for gener-

Driving interaction

Fast-forward Hamiltonian
Result:
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(a)

(b)

FIG. 4: The time dependence of |CFF

4 |2 (solid line), |CFF

2 |2

(dashed line), |CFF

3 |2 (dashed line), and |CFF

1 |2 (dotted

line):(a) Obtained by solving TDSE ; (b) Obtained from

eigenvectors.

ation of entangled states, the state-independent counter-

diabatic term would be available from a guiding Hamil-

tonian more general than in Eq.(3.1) as mentioned in the

beginning of Section III and at the end of Section III B.

In closing this Section, we should note about the

extension of the present scheme to many-spin systems.

The solution H̃
n

available from Eq.(2.7) is exact, in

contrast to the truncated variant of H to be obtained

from Demirplak-Rice-Berry’s formula in Eq.(2.18) by

extracting only a ground-state contribution in the

treatment of many-spin systems[13, 32]. If there is a

knowledge of the ground state of a many-spin system, we

can solve Eq.(2.7) under the strategy to use a candidate

regularization Hamiltonian H̃
n=0 like Eq.(3.1) and

expect a variety of ground-state counter-diabatic terms.

IV. CONCLUSION

By extending the idea of fast forward for adiabatic or-

bital dynamics, we presented a scheme of the fast forward

of adiabatic spin dynamics of quantum entangled states.

We settled the quasi-adiabatic dynamics by adding the

regularization terms to the original Hamiltonian and then

accelerated it with use of a large time-scaling factor. As-

suming the experimentally-realizable candidate Hamilto-

nian consisting of the exchange interactions and mag-

netic field, we solved the regularization terms. We took

a strategy: a product of the mean value ↵̄ of an infinitely-

large time-scaling factor ↵(t) and an infinitesimally-small

growth rate ✏ in the quasi-adiabatic parameter should

satisfy the constraint ↵̄·✏ = finite in the asymptotic limit

↵̄ ! 1 and ✏ ! 0. The regularization terms multiplied

by the velocity function give rise to the state-dependent

counter-diabatic terms. As an illustration we chose 3 sys-

tems of coupled spins whose ground states have entan-

gled states. Our scheme has generated a variety of fast-

forward Hamiltonians characterized by state-dependent

counter-diabatic terms for each of adiabatic states, which

can include the state-independent one. Broad range of

choosing the driving pair interactions and magnetic field

will make flexible the experimental design of accelerating

the adiabatic quantum spin dynamics or quantum com-

putation.
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Appendix A. Derivation of Eq.(2.12)

Taking the time derivative of  
FF

(t) in Eq.(2.8)

and using the equalities @
t

C(R(⇤(t))) = ↵✏@
R

C and

@
t

⇠(R(⇤(t))) = iC†@
t

C = i↵✏C†@
R

C, we have

i~ ̇
FF

=
h
i~↵✏(@

R

C� (C†@
R

C)C) + EC
i

⇥ e�
i

~
R

t

0 E((R(⇤(t0))))dt0ei⇠((R(⇤(t)))). (A1)

The first and second terms in the angular bracket on

the right-hand side are replaced by ↵✏H̃
n

C(R(⇤(t))) and

H0C(R(⇤(t))), respectively, by using Eqs.(2.7) and (2.1).

Then, using the definition of  
FF

(t) and taking the

asymptotic limit, we obtain Eq.(2.12).

Wavefunction solution 
of TDSE exactly agrees 
with the time 
dependence of the 
eigenstate. 

FF dynamics generates 
the entangled (Bell) 
state from the initial 
product state, quickly 
and not adiabatically.



Relationship between Hn and Demirplak-Rice-Berry’s 
state-independent counter-diabatic(CD) term H 

If there is an n-independent regularization term among  
{Hn}, we define H=v(t)H(R(L(t))) with use of v(t)= 
Then our core equation becomes 

3

Here v(t) is a velocity function available from ↵(t) in the

asymptotic limit:

v(t) = lim
✏!0,↵!1

✏↵(t) (2.14)

= v̄

✓
1� cos

2⇡

T
FF

t

◆
,

where v̄ = lim
✏!0,↵!1 ✏↵̄(= finite) is the mean of v(t).

Consequently

R(⇤(t)) = R0 + lim
✏!0,↵̄!1

"⇤(t)

= R0 +

Z
t

0
v(t0)dt0

= R0 + v̄


t� T

FF

2⇡
sin

✓
2⇡

T
FF

t

◆�
,

for 0  t  T
FF

. (2.15)

H
FF

is the driving Hamiltonian and H̃
n

is the regular-

ization term obtained from Eq.(2.7) to generate the fast-

forward scheme in spin system.

There is a relation between H̃
n

in Eq.(2.7) and

Demirplak-Rice-Berry’s counter-diabatic termH [5–7]. If

there is an n-independent regularization term H̃ among

{H̃
n

}, we define H ⌘ v(t)H̃(R(⇤(t))) with use of v(t) =
@R(⇤(t))

@t

. Then Eq.(2.7) becomes

H 0 = i~ @

@t
 0 � i~

NX

j=1

C⇤
j

@C
j

@t
 0, (2.16)

which can be rewritten as

H|ni = i~ @

@t
|ni � i~|nihn| @

@t
|ni, (2.17)

where |ni means the n-th eigenstate of the Hamiltonian

in Eq.(2.1). Operating both side of Eq.(2.17) on hn|, and
summing over n, we have

H
X

n

|nihn| = i~
X

n

@

@t
|nihn|� i~

X

n

|nihn| @
@t

|nihn|.
(2.18)

Noting the completeness condition for the eigenstates :P
n

|nihn| = 1, we have

H = i~
X

n

✓
@

@t
|nihn|� |nihn| @

@t
|nihn|

◆
, (2.19)

which agrees with Demirplak-Rice-Berry’s formula.

Therefore v(t)H̃(R(⇤(t))) corresponds to the counter-

diabatic term. Using this correspondence, one may call

v(t)H̃
n

(R(⇤(t))) as a state-dependent counter-diabatic

term. Hereafter we shall be concerned with the fast for-

ward of adiabatic dynamics of one of the adiabatic states

(e.g., the ground state), and thereby the su�x n in H̃
n

will be suppressed.

Note: Demirplak-Rice-Berry(DRB)’s counter-

diabatic(CD) term is state-independent by nature,

and can also be reproduced by the inverse engineering

[26] based on the Lewis-Riesenfeld’s invariant theory [8].

Inspired by the works [12, 27] on a streamlined version

of the fast-forward method, Patra and Jarzynski [28]

proposed a framework for constructing STA from the

velocity and acceleration flow field which characterizes

the adiabatic evolution, providing compact expressions

for both CD term and fast-forward potentials. Since

the flow field is uniquely defined using each adiabatic

eigenstate, there appears only one state-dependent

CD term, which is not equivalent to DRB’s CD term,

although the equivalence will be recovered if two kind of

CD terms will be projected onto each of adiabatic states.

By contrast, our formalism here can generate plural

number of sate-dependent CD terms for each adiabatic

state, which can include a state-independent one.

Now we investigate a single spin system in our scheme,

and show the fast forward of adiabatic dynamics in

Landau-Zener (LZ) model [29, 30]. We consider a mag-

netic field :

B(t) =

0

B@
�

0

R(t)

1

CA , (2.20)

where � is a constant. The Hamiltonian is given by

H0(R(t)) =
1

2
� ·B =

1

2

 
R(t) �

� �R(t)

!
(2.21)

with the eigenvalues �± = ±
p
R

2+�2

2 and eigenstates

 ±
0 =

 
C±

1

C±
2

!
=

 
��/s±

R⌥
p
R

2+�2

s±

!
, (2.22)

where

s± ⌘
h
2
p

R2 +�2
⇣p

R2 +�2 ⌥R
⌘i1/2

. (2.23)

Now we choose one of the states with �+ and  +
0 , and

consider the adiabatic dynamics where R = R0+ ✏t. The

adiabatically evolving state is :

 0(t) =

 
� �

s+

R�
p
R

2+�2

s+

!
e�

i

~
R

t

0

p
R

2+�2

2 dt

0
e⇠(t). (2.24)

Noting that H̃
ij

is traceless (H̃11 = - H̃22) and Hermitian

(H̃⇤
21 =H̃12), Eq.(2.7) constitutes a rank = 2 linear alge-

braic equation for two unknowns (H̃11 and H̃12). With
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Here v(t) is a velocity function available from ↵(t) in the

asymptotic limit:

v(t) = lim
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,

where v̄ = lim
✏!0,↵!1 ✏↵̄(= finite) is the mean of v(t).

Consequently

R(⇤(t)) = R0 + lim
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for 0  t  T
FF

. (2.15)

H
FF

is the driving Hamiltonian and H̃
n

is the regular-

ization term obtained from Eq.(2.7) to generate the fast-

forward scheme in spin system.

There is a relation between H̃
n

in Eq.(2.7) and

Demirplak-Rice-Berry’s counter-diabatic termH [5–7]. If

there is an n-independent regularization term H̃ among

{H̃
n

}, we define H ⌘ v(t)H̃(R(⇤(t))) with use of v(t) =
@R(⇤(t))

@t

. Then Eq.(2.7) becomes

H 0 = i~ @

@t
 0 � i~

NX

j=1

C⇤
j
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j

@t
 0, (2.16)

which can be rewritten as

H|ni = i~ @

@t
|ni � i~|nihn| @

@t
|ni, (2.17)

where |ni means the n-th eigenstate of the Hamiltonian

in Eq.(2.1). Operating both side of Eq.(2.17) on hn|, and
summing over n, we have

H
X

n

|nihn| = i~
X

n

@

@t
|nihn|� i~

X

n

|nihn| @
@t

|nihn|.
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Noting the completeness condition for the eigenstates :P
n

|nihn| = 1, we have

H = i~
X

n
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|nihn|

◆
, (2.19)

which agrees with Demirplak-Rice-Berry’s formula.

Therefore v(t)H̃(R(⇤(t))) corresponds to the counter-

diabatic term. Using this correspondence, one may call

v(t)H̃
n

(R(⇤(t))) as a state-dependent counter-diabatic

term. Hereafter we shall be concerned with the fast for-

ward of adiabatic dynamics of one of the adiabatic states

(e.g., the ground state), and thereby the su�x n in H̃
n

will be suppressed.

Note: Demirplak-Rice-Berry(DRB)’s counter-

diabatic(CD) term is state-independent by nature,

and can also be reproduced by the inverse engineering

[26] based on the Lewis-Riesenfeld’s invariant theory [8].

Inspired by the works [12, 27] on a streamlined version

of the fast-forward method, Patra and Jarzynski [28]

proposed a framework for constructing STA from the

velocity and acceleration flow field which characterizes

the adiabatic evolution, providing compact expressions

for both CD term and fast-forward potentials. Since

the flow field is uniquely defined using each adiabatic

eigenstate, there appears only one state-dependent

CD term, which is not equivalent to DRB’s CD term,

although the equivalence will be recovered if two kind of

CD terms will be projected onto each of adiabatic states.

By contrast, our formalism here can generate plural

number of sate-dependent CD terms for each adiabatic

state, which can include a state-independent one.

Now we investigate a single spin system in our scheme,

and show the fast forward of adiabatic dynamics in

Landau-Zener (LZ) model [29, 30]. We consider a mag-

netic field :

B(t) =

0

B@
�

0

R(t)

1

CA , (2.20)

where � is a constant. The Hamiltonian is given by

H0(R(t)) =
1

2
� ·B =

1

2

 
R(t) �

� �R(t)

!
(2.21)

with the eigenvalues �± = ±
p
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2+�2

2 and eigenstates
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0 =

 
C±

1

C±
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=
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, (2.22)

where
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. (2.23)

Now we choose one of the states with �+ and  +
0 , and

consider the adiabatic dynamics where R = R0+ ✏t. The

adiabatically evolving state is :
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Noting that H̃
ij

is traceless (H̃11 = - H̃22) and Hermitian

(H̃⇤
21 =H̃12), Eq.(2.7) constitutes a rank = 2 linear alge-

braic equation for two unknowns (H̃11 and H̃12). With
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Here v(t) is a velocity function available from ↵(t) in the
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H
FF

is the driving Hamiltonian and H̃
n

is the regular-

ization term obtained from Eq.(2.7) to generate the fast-

forward scheme in spin system.

There is a relation between H̃
n

in Eq.(2.7) and

Demirplak-Rice-Berry’s counter-diabatic termH [5–7]. If

there is an n-independent regularization term H̃ among

{H̃
n

}, we define H ⌘ v(t)H̃(R(⇤(t))) with use of v(t) =
@R(⇤(t))

@t

. Then Eq.(2.7) becomes

H 0 = i~ @
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 0, (2.16)

which can be rewritten as

H|ni = i~ @
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|ni � i~|nihn| @
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|ni, (2.17)

where |ni means the n-th eigenstate of the Hamiltonian

in Eq.(2.1). Operating both side of Eq.(2.17) on hn|, and
summing over n, we have
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Noting the completeness condition for the eigenstates :P
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|nihn| = 1, we have
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which agrees with Demirplak-Rice-Berry’s formula.

Therefore v(t)H̃(R(⇤(t))) corresponds to the counter-

diabatic term. Using this correspondence, one may call

v(t)H̃
n

(R(⇤(t))) as a state-dependent counter-diabatic

term. Hereafter we shall be concerned with the fast for-

ward of adiabatic dynamics of one of the adiabatic states

(e.g., the ground state), and thereby the su�x n in H̃
n

will be suppressed.

Note: Demirplak-Rice-Berry(DRB)’s counter-

diabatic(CD) term is state-independent by nature,

and can also be reproduced by the inverse engineering

[26] based on the Lewis-Riesenfeld’s invariant theory [8].

Inspired by the works [12, 27] on a streamlined version

of the fast-forward method, Patra and Jarzynski [28]

proposed a framework for constructing STA from the

velocity and acceleration flow field which characterizes

the adiabatic evolution, providing compact expressions

for both CD term and fast-forward potentials. Since

the flow field is uniquely defined using each adiabatic

eigenstate, there appears only one state-dependent

CD term, which is not equivalent to DRB’s CD term,

although the equivalence will be recovered if two kind of

CD terms will be projected onto each of adiabatic states.

By contrast, our formalism here can generate plural

number of sate-dependent CD terms for each adiabatic

state, which can include a state-independent one.

Now we investigate a single spin system in our scheme,

and show the fast forward of adiabatic dynamics in

Landau-Zener (LZ) model [29, 30]. We consider a mag-

netic field :

B(t) =

0

B@
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0

R(t)

1

CA , (2.20)

where � is a constant. The Hamiltonian is given by
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1
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with the eigenvalues �± = ±
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where
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Now we choose one of the states with �+ and  +
0 , and

consider the adiabatic dynamics where R = R0+ ✏t. The

adiabatically evolving state is :
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Noting that H̃
ij

is traceless (H̃11 = - H̃22) and Hermitian

(H̃⇤
21 =H̃12), Eq.(2.7) constitutes a rank = 2 linear alge-

braic equation for two unknowns (H̃11 and H̃12). With

Our regularization Hamiltonian, multiplied with 
velocity function, corresponds to Demirplak-Rice-
Berry’s counter-diabatic (CD) term.


