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Part 1
Fast forward of adiabatic spin dynamics:
Landau-Zener transition and generation
of entangled states

Part 2
Fast forward of adiabatic quantum
dynamics of spin clusters:
Geometry-dependent driving interactions




What is the fast forward?

This terminology means to reproduce a
series of events or a history of matters 1n a
shortened time scale, like a rapid projection
of movie films on the screen.

Reference evolution Fast-forwarded evolution
(standard time scale) (shortened time scale)



Fast forward (FF) can acquire reality with

use of suitable protocols, €.g., by applying a
well-designed external force,
electromagnetic field, etc.



Theory and experiment of real fast forward
(FF) 1s required wherever interesting
dynamics 1s forced to be very slow, such as
adiabatic quantum computation, adiabatic
quantum annealing, etc.

FF scheme reproduces the adiabatic
dynamics in a shortened time scale,
leaving neither residual oscillation nor
disturbance.



Theory of FF of adiabatic dynamics 1s proposed by
Masuda and Nakamura (2010~) and includes as a
special limit the recent theory of shortcut-to-adiabaticity
(STA) by Rice (2003, 2005), Berry (2009), Muga, et al
(2010~), Jarzynski (2013), et al.
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In the present lectures, consider spin systems
characterized by

a slowly time-changing parameter R(7)

such as the magnetic field, exchange interaction, etc.

References related to the present lectures:
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Let’s forcibly consider the eigenvalue problem for
the time-independent Schroedinger equation(TDSE)

R(t) :RQ—l—Gt €<<1

(adiabatically-changing parameter)



Quasi-adiabatic wave function
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To make the quasi-adiabatic wave function satisty
TDSE, the regularization of the Hamiltonian is
necessary:

~

Hy™ (R(t)) = Ho(R(t)) + eHn(R(1))

Then TDSE becomes

O VA(R(D) = (Ho + B Wo(R(D).  (25)

Here #,, is the n-th state-dependent regularization term

Let’s expand Eq.(2.5) with respect to €



In order of O(1)

HoVy = EVy,

and in order of O(e!)
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This 1s our core equation_to determine
the regularization terms H,,



Quasi-adiabatic function and TDSE

under the regularized Hamiltonian are characterized
by a slow time scale. However, they work well not
only for short time but also for any long time.

Our practical interest lies 1n their long-time
(7~O(1/\epsilon)) behaviors where

the adiabatic parameter value R(7) shows a
recognizable change.



Therefore we consider fast forwarding with
use of a large time-scaling factor:

The fast forward state is defined by

[ C1(R(A(1))) )
U pp(t) = : e~ 7 Jo B(R(A()))dt’ ig((R(A(1)))
\Cn (R(A(1))) )
(2.8)
where A(t) is an|advanced time|defined by
t
A(t) = / ()t (2.9)
0

A(t) =1t 1n case of no scaling



The explicit expression for a(t) in the fast-forward range
(0 <t <Tpp) is typically given by [2] as :

2—Wt> , (2.11)

Irr

1(~O(1/\epsilon)): a very long time for each event (adiabatic
spin 1nversion, LZ transition, adiabatic transition from
product to entangled states, etc) to be completed.



We can show that FF state satisties TDSE
under the FF Hamiltonian:

n 7~ ((Hy(R(A®) + vt (ROA(D) )

Detailed proof will be given in Part 2.



v(t) =  lim  ea(t) (2.14)
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where v = lim._,0 000 €@(= finite) is the mean of v(?).

R(A(t)) = Ro+ lim eA(t)

e—0,a—00

t
R0+/ v(t")dt’
0
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single-spin dynamics: Landau-Zener model
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where

SiL = {2\/}32 + A2 (\/R2 + A2 F R)} v . (2.23)

Now we choose one of the states with Ay and ¥J, and
consider the adiabatic dynamics where R = Ry +¢€t. The
adiabatically evolving state is :
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Noting that %w Is traceless (7—[11 = - 7—[22) and Hermitian
(H%, =Hi2), Eq.(2.7) constitutes a rank = 2 linear alge-
braic equation for two unknowns (7;211 and 7—212). With

0Cy 1 A
orR ~ 2z @
0C; _ 1 (Q-R):(Q+R)

R~ 2v2 Q5/2
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driving Hamiltonian:
B - 0 v(t)igé
H=v(t)H = (—v(t)i%é (2.28)

fast-forward Hamiltonian:

R(A(t)) A 2 AN
— S 4vu(t)isss
_ 2 2 2
Hrp = (A (t)ig A R(A(t))Q ) ° (2.29)
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The fast forward state is obtained from Eq.(2.8) as

Cir(A(®))\ _i ¢ VEGENZraZ
Upp=|_ e~ % Jo 2 t',
(@(A(t»

(2.30)
The total driving magnetic field is written as
A
Brr(t) = | —v(O)higmayaar | - (2.31)
R(A(2))

Fast forward of adiabatic LZ state-change with no transition!



Coupled two-spin systems



Candidate regularization Hamiltonian
(9 possible parameters)

~

T XX 7.~y Y 7. ~Z 2 1 x, Y Yy __x
H = Jio{oy + Joj0) + Jso{o; + Wi(o70; +0i03)

+ Wa(oi 05 + of03 ) + Wa(ofo3 + 0f035) + (01 +02) - B,



T

With use of the bases, [T1), [T4), [{1),and [|])

1ts matrix form becomes

J; + B, 1By —iBy) —iWra+ W5 (B, —iBy)—iW,+ W, Ji — J, —i2W,
| 5B +iBy) +iWy + Ws —J; Ji+ I 1By —iBy)+iW, — Ws
| S(Be+iBy) +iWy + Ws Ji+ J —J5 2By —iB))+iW, — W3
J— 4+ i2W, 1By +iB)—iW,— W3 LB, +iB)—iW,— W; Ji — B,

The explicit expression for the regularization
Hamiltonian greatly reduces the number of unknowns
and helps us to solve our core equation.



(A) Simple transverse Ising model

Reference Hamiltonian

Ho = J(R(1)0505 — 5 (0f + 03) Bo(R(1)

(3.3)

By using this bases : [11), |T)), |[41), and ||]), we have
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where the eigenvalue

—J, J, |-/J?+ B2,

and

v/J?+ B2). The normalized eigenvector are respec-

tively:
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ground state

and



The ground state changes its
nature from the product state
(cl=c2=c3=c4=1/2) to entangled
state(c2=c3=1/\sqrt(2), c1=c4=0),
as Bx tends 0 and J increases
from O.



Due to the|symmetry C; = Cy and Cy = (3, Eq.(2.7) for
the regularization terms reduces to

. o0C - ~

Zﬁa—RLl =A,Cy + A3, (3.6)
. 0C - ~

Zha—Rz = A3Cy + A4C5,

where ./11 = (7:[11 + 7:[14), ./2(2 = (7:[12 =+ 7:[13)7 AS —

~

(Hor + Hoa), and Ay = (Hao + Has).



To solve two-component simultaneous liner
equations, there are several possibilities of
solutions. We pick up the cases when the
equation for unknown {J,W, B} is regular.



~ CLC4 bCQ
Jo = — 0
S0} -C3

W 7:(@02 —+ bC4)
2 — )
2(C3 - CF)

To be explicit,

e

Wo = ~OR
: 4 (B2 + J?)



Driving and and fast-forward

Hamiltonians
/ 0 —iv(t) Wy —iv(t)Ws 0 \
o _ | Vs 0 0 v (t)Wo
| v ()W 0 0 w(t) Wy |’
\ 0 —iv(t)Wo —iv(t)Ws 0 )



RA(t)) = Ro+ lLm eA(t)
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The adiabatic parameter R changes by the value
U T¥F (~O(Ro)) 1n an arbitrary short time 7FF.



cl=c2=c3=c4=1/2 =y c2=c3=1/\sqrt(2), cl=c4=0

In this example, FF dynamics generates the
entangled (Bell) state from the initial product
state, quickly, and not adiabatically, leaving
neither residual oscillations nor disturbances.




(B) Model for generation of entangled state

1
H0:J0'f0'§—|-§(0'1—|—0'2)'B, (327)

which can generate an entangled state from the prod-
uct state. In Eq.(3.27) B = (B, B,, B,) with B, =
B.(R(t)). By, B, and J are assumed constants. Arrang-
ing the bases as |T1), |T1), [41), and |{]), we obtain

[ J+B. B: By B. ;B 0 \

P J2 2 ; 2 g,
Ho=| 23, Z
= 15t 0 —J SE =it
\ 0 B4l By B j_p



As Bz decreases from zero to some
negative value, the ground state changes
from the product state (c4=1,
cl=c2=c3=0) to the entangled one
(c1=c4=0, c2=c3=1/\sqrt(2)).



Result;
Fast-forward Hamiltonian

Hrr = —Jofo; — 3(of + 03)B;
— (o + 05 ) By (R(A(1)))
+ v(O)Wa(R(A®1))) (0] 05 + of0;)

+ 1(o] + 03 )u() By(R(A(D))).
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FF dynamics generates

the entangled (Bell)
state from the 1nitial o
product state, quickly 08
and not adiabatically. oo
Wavefunction solution 00 e

of TDSE exactly agrees e
with the time —

dependence of the 08
eigenstate. T
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FIG. 4: The time dependence of |Cf ¥ |? (solid line), |C4 ™ |?
(dashed line), |C3¥|? (dashed line), and |CT*|* (dotted
line):(a) Obtained by solving TDSE ; (b) Obtained from
eigenvectors.



Relationship between Hrn and Demirplak-Rice-Berry’s
state-independent counter-diabatic(CD) term H

If there 1s an n-independent regularization term amon%
{Hn}, we define H=v(f)H(R(L(?))) with use of v(¢)= 0 (8/;(75))

Then our core equation becomes

N

Mo = ih O W, - ch;%
=1

ot prabll

j:

which can be rewritten as

., 0 . 0
Hln) = iho n) — ihin)(n| o |n),



Y ) (o] = i3 S il — i3 ) (] 5 ) .

(2.18)
Noting the completeness condition for the eigenstates :

> .. |n){n| =1, we have

_mz( n)(n| — ><n\%|n><n\), (2.19)

Our regularization Hamiltonian, multiplied with
velocity function, corresponds to Demirplak-Rice-
Berry’s counter-diabatic (CD) term.




