Part 2

Fast forward of adiabatic quantum
dynamics of spin clusters:
Geometry-dependent driving
interactions



Review the FF scheme

Consider the Hamiltonian for spin systems to be charac-
terized by a slowly-time-changing parameter R(¢) such as the

exchange interaction, magnetic fiel

d, etc. Then we can study

the eigenvalue problem for the time-independent Schrodinger

equation
Ho(R)C"™(R) = E,(R)C"™(R), (2.1)
with
C" (R)
C"(R) = . , (2.2)
Cy (R)

R(t) — Rg + et
e <1

adiabatically-changing
parameter



W (R(1)) = C™(R(t)) exp (—% / En(R(t’))dt/)e’f"(R“))
0

(2.4)
1S a quasiadiabatic state, 1.e., adiabatically evolving state,
where &, 1s the adiabatic phase

t t
EJ(R(@)) =1 ] dt'C"79,C" = je / di’'C™M13,C"™.
0 0

(2.5)



The W, (R(¢)) in Eq. (2.4) is not a solution of the TDSE.
To make 1t satisty the TDSE, we must regularize the Hamilto-
nian as

Hy®(R(1)) = Hy(R(1)) + € H,(R(1)). (2.6)
Then the TDSE becomes

ih%\l!é”)(R(t)) = (Hy + eH )V (R@)).  (2.7)

We see

the eigenvalue problem in Eq. (2.1) of O(€") and the algebraic
equation for H,,,

., C"(R) = ihdgC"(R) — ik(C™T 9, C"HC™(R), (2.8)

of O(e'). Equation (2.8) is the core of the present study.



The state (2.4) and TDSE (2.7) are working on a very slow
timescale. We will modify them so that they can work on a
laboratory timescale.

With time ¢ rescaled by the advanced time A(?), the fast-
forward state 1s introduced as

v () = WI(R(A®)))

= C"(R(A(2))) exp (—% f En(R(A(t’)))dt’>

0
w EnRA@)). (2.9)
where A () 1s defined by
t
A@) = / a(tdt’, (2.10)
0
_ _ 21
a(t)=a — (e — 1)cos (—t), (2.11)
I

where @ 1s the mean value of «(7) and 1s given by & = T/ Tr.



Then, by taking the time derivative of W) in Eq. (2.9)
and using the equalities 9,C"™(R(A(t))) = aedxC"™ and
3,E,(R(A(1))) = iC"™WT9,C"™ = jqe C"79xC", we have

ih\pl(?’l? = {ihOtE[aRC(n) — (C(”)TaRc(n))C(n)] i Ec(n)}

; l
X exp (—%/ En(R(A(t’)))dt’>e"?n(R(A(f))),
0

(2.13)



Using the definition of W (r) and taking the asymptotic
limit @ — o0 and € — 0O under the constraint that @ - € = v
1s finite, we obtain

maxpgg = [Hy(R(A(1))) 4+ v(t)FLu(R(A (1)) W )
or 0 " FF

— )y, (n)
= HOwm (2.14)



Time scaling factor 1s now replaced by velocity function as

v(t) =  lim  ea(t) (2.14)

e—0,aa— 00

- (1 s t)
— 91— cos ,
Irr

where v = lim._,0 000 €@(= finite) is the mean of v(?).

R(A(t)) = Ro+ lim eA(t)

e—0,a—00

t
R0+/ v(t")dt’
0

_ Trr . 27
R t— ki
OHJ[ 27 Sm(TFF >]’
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Fast forward of adiabatic dynamics of
regular spin clusters

FIG. 1. (a) Regular triangle and (b) open linear three-spin chain.
Solid lines stand for the original exchange interactions. Dashed and
dotted lines show the pairwise regularization interactions. Each line
species denotes the geometrically identical regularization interaction.
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FIG. 2. (a) Triangular pyramid, (b) square, (c) primary star
graph, and (d) open linear four-spin chain. Solid lines stand for
the original exchange interactions. Dashed, dotted, dot-dashed, and
double-dot—dashed lines show the pairwise regularization interac-
tions. Each line species denotes the geometrically identical regular-
1zation interaction.



As an original (reference) model, we choose the transverse
Ising mode, whose Hamiltonian for N spin systems 1s written
as

N
Hy=J(R()) Y ofoi—3iB(R@)) of, (.1
=1

(1,/)eNN

where J(R(t)) = R(t) = Ry + ¢t and B,(R(t)) = By — R(¢),
with € < 1, are the adiabatically changing exchange interac-
tion and transverse magnetic field, respectively, and (i, j) €
NN denotes nearest-neighboring pairs. Using the spin config-
uration bases, the dimension of Hilbert space is 2.



the regularization term consisting of pairwise interactions de-

scribed by Wy © Wy “(et) and three-body interactions f]y,f —

Qf]y L (et). Other p0551ble contributions such as a single-particle

energy due to the y component of the magnetic field (Ey),
pairwise interaction W;”, and three-body interaction ijxky lead
to an incompatible algebraic equation (2.8) and should be
excluded. The candidate for the regularization Hamiltonian
then takes the form

o 7Y Y 2 .Y
H = E Wij(oriaj—l—oria].)

(i, j)eall

+ D Ojilofo) +ol0)) of.  (32)
(i,j,k)eall



Since regular spin clusters have geometric
symmetry, some of the pair-wise interaction
( W) are degenerate and the reduced
number of independent interactions should
be equal to the number of independent
equations 1n the core equation.



A. Regular triangle

In the case of the regular triangle, the eigenvalue for the
ground state is Eg = —/B2 + 2B,J + 4J% — % + J. We have
confirmed in Fig. 3(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J(R(A(t))) = R(A(t)) and B, (R(A(t))) = By —
R(A(t)), with R(A(t)) defined in Eq. (2.16).
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In this section we investigate a regular triangle and open
linear three-spin chains in Fig. 1. We use the spin config-

uration bases as [1) = |7 1), [2) =[1 1), [3) =1 1),
4) =L 1) 15 =11 44 16) =14 1), 7)) =1 {1), and
8) =14 ).



The components of the eigenvector for the ground state are
C1=Vig, =W, G=V3, Gy =Vag, Cs =Vsg, Cg =
Ve, C7g =V7C,and Cg = Vg, where V), =Vg =1, V, = V53 =

2
V= Vs = Ve = Vo = 24/ B2+2B.J+4J +Bx+4J, and ¢ = 1

3B, Jrren

Here we see the symmetry C; =Cg and G, = C3 = (4 =

Cs = C¢ = (7. From the R derivative of the normalization

(Zj-:l CJ2 = 2C12 + 6C22 = 1), we see that

Ci— +3C,— =0, 4.1)

and then the adiabatic phase & = 0.

Initial ground state = product state
Cl=C=C=C=Cs=C=C=Cs = =



three-body interaction. Three Wl?z’s should be 1dentical due to
the triangular symmetry in Fig. 1(a). Therefore, the unknown
pairwise interaction is the only one, W = WSZ, independent of
the pairs (i, j).

By using the spin configuration bases as above, the reg-

ularization Hamiltonian (3.2) is characterized by the ma-
trix elements: Hlj = —7—[]1 = —2iW with j = 2, 3, 4, ng =

—H 8 = —2iW with Jj =135,6,7, and all other elements equal
to zero. The explicit expression for 7{ will help us solve
Eq. (2.8).

Due to the symmetry of {C;}, there are only two indepen-
3dent equations in Eq. (2.8):

(4.2)




- drC
W:hR2
2C

dJ 0B,
B s (4.3)
4(B% +2B,J +4J?)

= h(C10rC, — CL0rCY)

The second equality in (4.3) is due to the normalization
condition and Eq. (4.1). Including the regularization term
followed by rescaling of time, the fast-forward Hamiltonian
1s written as

Hrr = Hy(R(A(1))) + v()H(R(A(1))), (4.4)

with Hy = J(R(A(t)))(070} + 0505 +0f0%) — 3(07 + 05 +
07)B,(R(A(t))) and vH = v(t)W(R(A()))[(0] 0% + oi0)
+ (0505 + 0503) + (0307 + o50))].
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FIG. 3. Time dependence in the case of the regular triangle
in the fast-forward time range where we choose J = R(A(¢)) and
B, = By — R(A(t)), with R(A(t)) defined in Eq. (2.16). The other
parameters are By = 10, v = 100, Tgg = 0.1, and Ry = 0. (a) All
eight eigenvalues. From the bottom, the second and fourth lines are
doubly degenerate. (b) Regularization term v(t)W. (c) Probability
amplitudes for the solution Wgg(7) of the TDSE: |C}F|> = |C3F |2 =
|CFF|2 |CFF|2 |CFF|2 |CFF|2 (SOhd lll’le) and |CFF|2 |CFF|2
(dashed line).
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B. Open linear three-spin chains

In a similar way we can obtain the regularization term
and fast-forward Hamiltonian in the case of open linear
three-spin chains. In this case the eigenvalue for the ground
state is Eg = —+[B, + (B + B) — V/3i(B — B)], where B =
(18J%B, — 8B + 6Ji,/48J* 4+ 39B2J2 + 24B*)!/°. We have
confirmed in Fig. 4(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J(R(A(t))) = R(A(t)) and B,(R(A(t))) = By —
R(A(t)), with R(A(¢)) defined in Eq. (2.16).
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The components of the eigenvector for the ground state
are Ci,=C =Vit, G, =C4=C5=C3 =V, and C5 =

3B2—8JB,—4B,Ey—4E}—8EyJ
Ce = V3§, where Vi = = = 4;on 0 s , Vo = —%Vl —
%, V3 =1, and ¢ = L . Here we see the sym-
x 2V AV 42

metry C; = Cg, C, = C4 = Cs5 = (7, and (3 = Cg. From the

R derivative of the normalization (Zj-:l C]2 = 2C7 +4C5 +
2C32 = 1), we see that

c, 261 0% 96 (4.5)
Y9R “9R | T arR '

Initial ground state = product state
Cil=G=G=0C=0CG=0CG=0=0C = 53




The regularization Hamiltonian for the linear three-spin
system can also be available without using the three-body
interaction. Because of the geometric symmetry seen In
Fig. 1(b), H is then characterized by two independent pairwise
interactions W) = W;J = W,; and W, = W;;, where W; and
W, correspond to the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) interactions, respectively. With use of the
spin configuration bases, the matrix form for # in Eq. (3.2)
1s given by

...............
.................
.....
ey
&
+
.

‘_-“



W, + W, 0 0 0 0 —W + W, 0

2W, 0 0 0 W, — W, 0 W, — W,
ﬁ:zm+% 0 0 0 0 —W, + W, 0
0 0 —W, + W, 0 0 0 0
0 W, — W, 0 W, — W, 0 0 0
0 0 —W + W, 0 0 0 0

\ 0 0 0 0 WV, W, =W — W

Due to the symmetry of {C;}, there are three independent
equations in Eq. (2.8):

L ~ aC
—%M+ﬂ@@—%%@=haé (4.72)

o . 9C,

(W1 + Wo)Cy + (=W + Wo)(5 = ha—R’ (4.7b)

i} L 9C
2mq+ﬂm—wmb=@£. 4.7¢)

By using Eq. (4.5), Eq. (4.7¢), for example, proves trivial.
Then Eqgs. (4.7), whose coefficient matrix has the rank 2, gives
the solution

S O O

Wl -|: WQ
2W;
W + W,

/



- ho(Cy —C
W —— (€ 3)(C1-|—2C2—|-C3)_1,

2 OR
- ho(Cp—2C,+C
W, = —5 (€ 8R2 3)(C1 + 2C, + C3)_1. (4.8)

Including the regularization terms followed by rescaling of
time, the fast-forward Hamiltonian 1s written as

Hrr = Ho(R(A(1))) + v()H(R(A(1))), (4.9)

with  Hy = J(R(A()))(o{05 + 0fof) — 2(o7 + 05 + 0F)
B:(R(A(t))) and vH = v()Wi(R(A()))[(0]05 + o{03)
+ (0505 + 0505)] + v )Wa(R(A(2)))(o; 05 + 0{o3). The
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FIG. 4. Same time dependence as in Fig. 3, but in the case
of the open linear three-spin chain. (a) All eight eigenvalues.
(b) Regularization terms v(¢)W; (dashed line) and v(t)W, (dotted
line). (c) Probability amplitudes for the solution Wgg(¢) of the
TDSE: |CIF|? = |CFF|? (solid line), |CTF|? = |CEF|* (dashed line),
and |C3F|? = |C}F|? = |CEF|? = |CEF|? (dotted line).



We conclude, for N = 3 spin clusters,
that the driving interaction consists of
only the geometry-dependent pairwise
interactions and there 1s no need for the
three-body interaction.



V. TRIANGULAR PYRAMID, SQUARE, STAR GRAPH,
AND OPEN LINEAR FOUR-SPIN CHAINS

Now we will investigate regular spin clusters with N =
4 spins, namely, a triangular pyramid, square, star graph,
and open linear four-spin chains in Fig. 2. Their original
(reference) and regularization Hamiltonians have already been
given 1n Egs. (3.1) and (3.2), respectively, where we set
N =4.

By using the spin configuration bases |1) = |1 T11),

2) =11, By=1r i, =1 It D)=
YA, 16 =11 ), (D =11 ), 18) =11 111,
=N 1t) 0=t i1, [TH =1 N1, 12) =

AL, 113) = [Ldtd), (1) = [ M) 115 =11 LD,
and |16) =[] |{]), the matrix form for the original

Hamiltonian Hy in Eq. (3.1) can be constructed.




Triangular pyramid or Tetrahedron

Due to the symmetry of {C;}, there are three independent
equations in Eq. (2.8):

i 9C
—12WC, = Fi—,
IR
i . 9C
3WC, — 3WCs = hi—2,
IR
i 9C;
AWC, = h—2. 5.3
> R (5.3)

While one of Eqgs. (5.3) is trivial due to Eq. (5.1), we need
one more unknown variable to make meaningful the algebraic
equations (5.3). Here we evaluate the contribution of the
three-body interaction. The geometrical symmetry allows a
universal three-body interaction Q = ”;C]X]f, independent of all
possible three-body configurations (i, j, k). The inclusion of
the three-body interaction improves some matrix elements of



After the above improvements, the algebraic equations (5.3)
are revised as

12WC, — 240C, = jOC
2 6 — aR ’
- - 0C

80C; + 4WC, =  9Ce
1 2_ aR,

where one of Eqgs. (5.5) 1s again trivial because of Eq. (5.1).
Equations (5.5), whose coefficient matrix has the rank 2, give



the solution

19RC
3(C — Cs)’

- - hor(C 3C,
W= O— R(C1 + 6).
24(Cy — Cy)

(5.6)

The fast-forward Hamiltonian is given by

4
Her = JR(AM) Y ofoi — IB.(R(AM) Y o}
i=1

(i, j)ENN
+v(OHR(A®))), (5.7)
with
vH = Y vOWRAW))(0]0F + ofo?)
(i, j)eall
+ Y vOORAD)) (070 + 0l0)) - of.
(i, j,k)eall

(5.8)
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Primary star graph

equations in Eq. (2.8) and cannot be acceptable. Due to the

" . symmetry of {C,}, there are four independent equations

i} i} i} i 3C
(—6Wy — 3W)Cy + (—3W,)Cy — 240Cs = ha—RI, (5.14a)

-
o
¥
*
*

L ~ 3C
(2Ws + W)Cy + (=3W;)Cs = ha—Rz, (5.14b)

*
*y
-
"
"y
"
e,

*,
",
b
+
L5

i} . ~ 9C
(BW,)Cy + 3W, — 6W)Cs = ha—R4, (5.14c¢)

_ ) ) ) C
80C; + BW))Cy + (=W + 2W»)Cy = ha—;. (5.14d)

Because of Eq. (5.13), one of Eqgs. (5.14) becomes triv-
ial. Ignoring Eq. (5.14a), for example, Egs. (5.14b)—(5.144d),
whose coefficient matrix has the rank 3, give the solution



Wi = 5 C10grC4 + 3C60rC |
3(C1 — Go)(C1 + 3Cs)
v, — h3(C1 4+ Cg)IrCr — (C; — 3C¢)0rCy
6(C1 — Co)(Cy + 3GCs) ,
h
24C1(C; — Ce)(Cy 4+ 3Cy)

x [3(CF + 2C1Cs — 3C5) 9rCo
—3(3C,Co + C1C4)0rC,
— (BC1Cy — 2C1C4 4+ 3C4Cg)0rC4]. (5.15)

Q:

The fast-forward Hamiltonian 1s given by Eq. (5.7), where
v(t)H(R(A(t))) 1s replaced by

vH = Z v(W, (R(A(t)))(aiyaf + aiza;) + Z v(t)Wz(R(A(t)))(aiyaf + Gfa]).’)
(1,))=(1,2),(2,3),(2,4) (i,7)=(1,4),(1,3),(3,4)

+ Z U(Z)Q(R(A(I)))(O‘;CO'; + Uiyaj’-“) s

(i, j,k)eall
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We find for N = 4 spin clusters, that the
geometry-dependent pairwise interactions again
constitute a major part of the driving
interaction, whereas the universal three-body
interaction free from the geometry 1s necessary
but plays a subsidiary role.



Summary

The fast forward (FF) of adiabatic dynamics of
coupled spins can generate entangled states from the
initial product state very quickly, leaving neither
residual oscillations nor disturbances.

Geometric symmetry reduces the complexity of the
driving interactions.

Broad range of choosing the driving pair interactions
and magnetic field will make flexible the
experimental design of reproducing the adiabatic
quantum spin dynamics or quantum computation in an
extremely short time.



