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tant in the context of quantum computers. In Section

II we shall construct the scheme of fast forward of adia-

batic quantum spin dynamics and elucidate its relation

with the method of transitionless quantum driving. In

Section III, we shall apply the fast forward scheme to

two minimum models for quantum annealing and gener-

ation of entangled states, and obtain a wide variety of

state-dependent counter-diabatic terms to guarantee the

accelerated entanglement dynamics. Section IV is de-

voted to summary and discussions. Appendix gives a list

of formal solutions for state-dependent counter-diabatic

terms in the model(B).

II. FAST-FORWARD OF ADIABATIC SPIN

DYNAMICS

Consider the Hamiltonian for the spin systems to

be characterized by the slowly time-changing parameter

R(t) such as the exchange interaction, magnetic field,

etc. Then we can study the eigenvalue problem for the

time-independent Schrödinger equation :
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where R(t) = R0 + ✏t is the adiabatically-changing pa-
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to be a quasi-adiabatic state, i.e., adiabatically evolving

state. ⇠ is the adiabatic phase [14–16] defined by
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 0(R(t)) in Eq.(2.2), as it stands, cannot satisfy the

time-dependent Schrödinger equation (TDSE). To make

 0(R(t)) to satisfy the TDSE, we must regularize the

Hamiltonian as
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Here H̃
n

is the n-th state-dependent regularization term

[2]. Substituting  0(R(t)) in Eq.(2.2) into the above

TDSE, we see in order of O(✏0) Eq.(2.1), i.e.,

H0 0 = E 0, (2.6)

and in order of O(✏1)
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The fast forward state is defined by
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where ⇤(t) is an advanced time defined by

⇤(t) =

Z
t

0
↵(t0)dt0, (2.9)

with the standard time t. ↵(t) is a magnification time-

scale factor given by ↵(0) = 1, ↵(t) > 1 (0 < t < T
FF

)

and ↵(t) = 1 (t � T
FF

). We consider the fast forward

dynamics which reproduces the target state  0(T ) in a

shorter final time T
FF

defined by
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where ↵̄ is the mean value of ↵(t) and is given by
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a transverse field [22–25] and the related model [26], which
showed the complicated nonlocal multibody CD terms that
are hard to achieve in experiment. While a variational method
to generate approximate local CD protocols [11,12] is being
cultivated, it is timely to sharpen the fast-forward approach
by showing a guiding principle to manage spin clusters with
various geometries on the basis of the proposed formula in
[16].

In this paper the fast-forward scheme of adiabatic dynam-
ics is applied to regular spin clusters of various geometries
with the number of spins N up to 4, i.e., regular triangle and
open linear chains for N = 3 spins and triangular pyramid,
square, primary star graph, and open linear chains for N = 4
spins. (Note that the geometry is irrelevant for systems with
N = 1 and 2 spins.) Choosing the Hamiltonian for a transverse
Ising model as a reference, we will reveal the nature of
driving interactions. In Sec. II we give a brief summary of
the fast-forward scheme of adiabatic quantum spin dynamics.
In Sec. III we propose a candidate regularization Hamiltonian
consisting of geometry-dependent pairwise interactions and
a universal three-body interaction and describe a method of
solving the linear algebraic equation for regularization terms.
Sections IV and V are devoted to the analysis of spin clusters
of various geometries with N = 3 and N = 4, respectively.
Section VI provides a summary and a discussion of the
results. The Appendix gives matrices for some regularization
Hamiltonians.

II. FAST-FORWARD SCHEME OF ADIABATIC
SPIN DYNAMICS

For self-containedness, we sketch the fast-forward scheme
of adiabatic spin dynamics [16]. Our strategy is as follows.
(i) A given original (reference) Hamiltonian H0 is assumed
to change adiabatically and to generate a stationary state !0,
which is an eigenstate of the time-independent Schrödinger
equation with the instantaneous Hamiltonian. Then H0 is
regularized so that !0 should satisfy the time-dependent
Schrödinger equation (TDSE). (ii) Taking !0 as a reference
state, we will rescale time in the TDSE with the use of the
scaling factor α(t ), where the mean value ᾱ of the infinitely
large time-scaling factor α(t ) will be chosen to compensate
for the infinitesimally small growth rate ϵ of the quasiadi-
abatic parameter and to satisfy the condition that ᾱ × ϵ be
finite.

Consider the Hamiltonian for spin systems to be charac-
terized by a slowly-time-changing parameter R(t ) such as the
exchange interaction, magnetic field, etc. Then we can study
the eigenvalue problem for the time-independent Schrödinger
equation

H0(R)C(n)(R) = En(R)C(n)(R), (2.1)

with

C(n)(R) =

⎛

⎜⎝
C(n)

1 (R)
...

C(n)
N (R)

⎞

⎟⎠, (2.2)

where

R ≡ R(t ) = R0 + ϵt (2.3)

is the adiabatically changing parameter with ϵ ≪ 1. In
Eq. (2.1), n stands for the quantum number for each eigen-
value and eigenstate. Let us assume that

! (n)
0 (R(t )) = C(n)(R(t )) exp

(
− i

h̄

∫ t

0
En(R(t ′))dt ′

)
eiξn (R(t ))

(2.4)
is a quasiadiabatic state, i.e., adiabatically evolving state,
where ξn is the adiabatic phase

ξn(R(t )) = i
∫ t

0
dt ′C(n)†∂t C(n) = iϵ

∫ t

0
dt ′C(n)†∂RC(n).

(2.5)

The ! (n)
0 (R(t )) in Eq. (2.4) is not a solution of the TDSE.

To make it satisfy the TDSE, we must regularize the Hamilto-
nian as

H reg
0 (R(t )) = H0(R(t )) + ϵH̃n(R(t )). (2.6)

Then the TDSE becomes

ih̄
∂

∂t
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0 (R(t )) = (H0 + ϵH̃n)! (n)
0 (R(t )). (2.7)

Here H̃n is the nth state-dependent regularization term. Sub-
stituting ! (n)

0 (R(t )) in Eq. (2.4) into the above TDSE, we see
the eigenvalue problem in Eq. (2.1) of O(ϵ0) and the algebraic
equation for H̃n,

H̃nC(n)(R) = ih̄∂RC(n)(R) − ih̄(C(n)†∂RC(n) )C(n)(R), (2.8)

of O(ϵ1). Equation (2.8) is the core of the present study.
The state (2.4) and TDSE (2.7) are working on a very slow
timescale. We will modify them so that they can work on a
laboratory timescale.

With time t rescaled by the advanced time &(t ), the fast-
forward state is introduced as

! (n)
FF (t ) ≡ ! (n)

0 (R(&(t )))

= C(n)(R(&(t ))) exp
(

− i
h̄

∫ t

0
En(R(&(t ′)))dt ′

)

× eiξn (R(&(t ))), (2.9)

where &(t ) is defined by

&(t ) =
∫ t

0
α(t ′)dt ′, (2.10)

with the standard time t . Here α(t ) is an arbitrary magni-
fication timescale factor which satisfies α(0) = 1, α(t ) > 1
(0 < t < TFF), and α(t ) = 1 (t ! TFF). For a long final time
T in the original adiabatic dynamics, we can consider the
fast-forward dynamics with a new time variable which repro-
duces the target state ! (n)

0 (R(T )) in a shorter final time TFF
defined by

T =
∫ TFF

0
α(t )dt . (2.11)

The simplest expression for α(t ) in the fast-forward range
(0 " t " TFF) is given in [8] as

α(t ) = ᾱ − (ᾱ − 1) cos
(

2π

TFF
t
)

, (2.12)

where ᾱ is the mean value of α(t ) and is given by ᾱ = T/TFF.
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large time-scaling factor α(t ) will be chosen to compensate
for the infinitesimally small growth rate ϵ of the quasiadi-
abatic parameter and to satisfy the condition that ᾱ × ϵ be
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timescale. We will modify them so that they can work on a
laboratory timescale.

With time t rescaled by the advanced time &(t ), the fast-
forward state is introduced as

! (n)
FF (t ) ≡ ! (n)

0 (R(&(t )))

= C(n)(R(&(t ))) exp
(

− i
h̄

∫ t

0
En(R(&(t ′)))dt ′

)

× eiξn (R(&(t ))), (2.9)

where &(t ) is defined by

&(t ) =
∫ t

0
α(t ′)dt ′, (2.10)

with the standard time t . Here α(t ) is an arbitrary magni-
fication timescale factor which satisfies α(0) = 1, α(t ) > 1
(0 < t < TFF), and α(t ) = 1 (t ! TFF). For a long final time
T in the original adiabatic dynamics, we can consider the
fast-forward dynamics with a new time variable which repro-
duces the target state ! (n)

0 (R(T )) in a shorter final time TFF
defined by

T =
∫ TFF

0
α(t )dt . (2.11)

The simplest expression for α(t ) in the fast-forward range
(0 " t " TFF) is given in [8] as

α(t ) = ᾱ − (ᾱ − 1) cos
(

2π

TFF
t
)

, (2.12)

where ᾱ is the mean value of α(t ) and is given by ᾱ = T/TFF.
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a transverse field [22–25] and the related model [26], which
showed the complicated nonlocal multibody CD terms that
are hard to achieve in experiment. While a variational method
to generate approximate local CD protocols [11,12] is being
cultivated, it is timely to sharpen the fast-forward approach
by showing a guiding principle to manage spin clusters with
various geometries on the basis of the proposed formula in
[16].

In this paper the fast-forward scheme of adiabatic dynam-
ics is applied to regular spin clusters of various geometries
with the number of spins N up to 4, i.e., regular triangle and
open linear chains for N = 3 spins and triangular pyramid,
square, primary star graph, and open linear chains for N = 4
spins. (Note that the geometry is irrelevant for systems with
N = 1 and 2 spins.) Choosing the Hamiltonian for a transverse
Ising model as a reference, we will reveal the nature of
driving interactions. In Sec. II we give a brief summary of
the fast-forward scheme of adiabatic quantum spin dynamics.
In Sec. III we propose a candidate regularization Hamiltonian
consisting of geometry-dependent pairwise interactions and
a universal three-body interaction and describe a method of
solving the linear algebraic equation for regularization terms.
Sections IV and V are devoted to the analysis of spin clusters
of various geometries with N = 3 and N = 4, respectively.
Section VI provides a summary and a discussion of the
results. The Appendix gives matrices for some regularization
Hamiltonians.

II. FAST-FORWARD SCHEME OF ADIABATIC
SPIN DYNAMICS

For self-containedness, we sketch the fast-forward scheme
of adiabatic spin dynamics [16]. Our strategy is as follows.
(i) A given original (reference) Hamiltonian H0 is assumed
to change adiabatically and to generate a stationary state !0,
which is an eigenstate of the time-independent Schrödinger
equation with the instantaneous Hamiltonian. Then H0 is
regularized so that !0 should satisfy the time-dependent
Schrödinger equation (TDSE). (ii) Taking !0 as a reference
state, we will rescale time in the TDSE with the use of the
scaling factor α(t ), where the mean value ᾱ of the infinitely
large time-scaling factor α(t ) will be chosen to compensate
for the infinitesimally small growth rate ϵ of the quasiadi-
abatic parameter and to satisfy the condition that ᾱ × ϵ be
finite.

Consider the Hamiltonian for spin systems to be charac-
terized by a slowly-time-changing parameter R(t ) such as the
exchange interaction, magnetic field, etc. Then we can study
the eigenvalue problem for the time-independent Schrödinger
equation

H0(R)C(n)(R) = En(R)C(n)(R), (2.1)

with

C(n)(R) =

⎛

⎜⎝
C(n)

1 (R)
...

C(n)
N (R)

⎞

⎟⎠, (2.2)

where

R ≡ R(t ) = R0 + ϵt (2.3)

is the adiabatically changing parameter with ϵ ≪ 1. In
Eq. (2.1), n stands for the quantum number for each eigen-
value and eigenstate. Let us assume that

! (n)
0 (R(t )) = C(n)(R(t )) exp

(
− i

h̄

∫ t

0
En(R(t ′))dt ′

)
eiξn (R(t ))

(2.4)
is a quasiadiabatic state, i.e., adiabatically evolving state,
where ξn is the adiabatic phase

ξn(R(t )) = i
∫ t

0
dt ′C(n)†∂t C(n) = iϵ

∫ t

0
dt ′C(n)†∂RC(n).

(2.5)

The ! (n)
0 (R(t )) in Eq. (2.4) is not a solution of the TDSE.

To make it satisfy the TDSE, we must regularize the Hamilto-
nian as

H reg
0 (R(t )) = H0(R(t )) + ϵH̃n(R(t )). (2.6)

Then the TDSE becomes

ih̄
∂

∂t
! (n)

0 (R(t )) = (H0 + ϵH̃n)! (n)
0 (R(t )). (2.7)

Here H̃n is the nth state-dependent regularization term. Sub-
stituting ! (n)

0 (R(t )) in Eq. (2.4) into the above TDSE, we see
the eigenvalue problem in Eq. (2.1) of O(ϵ0) and the algebraic
equation for H̃n,

H̃nC(n)(R) = ih̄∂RC(n)(R) − ih̄(C(n)†∂RC(n) )C(n)(R), (2.8)

of O(ϵ1). Equation (2.8) is the core of the present study.
The state (2.4) and TDSE (2.7) are working on a very slow
timescale. We will modify them so that they can work on a
laboratory timescale.

With time t rescaled by the advanced time &(t ), the fast-
forward state is introduced as

! (n)
FF (t ) ≡ ! (n)

0 (R(&(t )))

= C(n)(R(&(t ))) exp
(

− i
h̄

∫ t

0
En(R(&(t ′)))dt ′

)

× eiξn (R(&(t ))), (2.9)

where &(t ) is defined by

&(t ) =
∫ t

0
α(t ′)dt ′, (2.10)

with the standard time t . Here α(t ) is an arbitrary magni-
fication timescale factor which satisfies α(0) = 1, α(t ) > 1
(0 < t < TFF), and α(t ) = 1 (t ! TFF). For a long final time
T in the original adiabatic dynamics, we can consider the
fast-forward dynamics with a new time variable which repro-
duces the target state ! (n)

0 (R(T )) in a shorter final time TFF
defined by

T =
∫ TFF

0
α(t )dt . (2.11)

The simplest expression for α(t ) in the fast-forward range
(0 " t " TFF) is given in [8] as

α(t ) = ᾱ − (ᾱ − 1) cos
(

2π

TFF
t
)

, (2.12)

where ᾱ is the mean value of α(t ) and is given by ᾱ = T/TFF.
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a transverse field [22–25] and the related model [26], which
showed the complicated nonlocal multibody CD terms that
are hard to achieve in experiment. While a variational method
to generate approximate local CD protocols [11,12] is being
cultivated, it is timely to sharpen the fast-forward approach
by showing a guiding principle to manage spin clusters with
various geometries on the basis of the proposed formula in
[16].

In this paper the fast-forward scheme of adiabatic dynam-
ics is applied to regular spin clusters of various geometries
with the number of spins N up to 4, i.e., regular triangle and
open linear chains for N = 3 spins and triangular pyramid,
square, primary star graph, and open linear chains for N = 4
spins. (Note that the geometry is irrelevant for systems with
N = 1 and 2 spins.) Choosing the Hamiltonian for a transverse
Ising model as a reference, we will reveal the nature of
driving interactions. In Sec. II we give a brief summary of
the fast-forward scheme of adiabatic quantum spin dynamics.
In Sec. III we propose a candidate regularization Hamiltonian
consisting of geometry-dependent pairwise interactions and
a universal three-body interaction and describe a method of
solving the linear algebraic equation for regularization terms.
Sections IV and V are devoted to the analysis of spin clusters
of various geometries with N = 3 and N = 4, respectively.
Section VI provides a summary and a discussion of the
results. The Appendix gives matrices for some regularization
Hamiltonians.

II. FAST-FORWARD SCHEME OF ADIABATIC
SPIN DYNAMICS

For self-containedness, we sketch the fast-forward scheme
of adiabatic spin dynamics [16]. Our strategy is as follows.
(i) A given original (reference) Hamiltonian H0 is assumed
to change adiabatically and to generate a stationary state !0,
which is an eigenstate of the time-independent Schrödinger
equation with the instantaneous Hamiltonian. Then H0 is
regularized so that !0 should satisfy the time-dependent
Schrödinger equation (TDSE). (ii) Taking !0 as a reference
state, we will rescale time in the TDSE with the use of the
scaling factor α(t ), where the mean value ᾱ of the infinitely
large time-scaling factor α(t ) will be chosen to compensate
for the infinitesimally small growth rate ϵ of the quasiadi-
abatic parameter and to satisfy the condition that ᾱ × ϵ be
finite.

Consider the Hamiltonian for spin systems to be charac-
terized by a slowly-time-changing parameter R(t ) such as the
exchange interaction, magnetic field, etc. Then we can study
the eigenvalue problem for the time-independent Schrödinger
equation

H0(R)C(n)(R) = En(R)C(n)(R), (2.1)

with

C(n)(R) =

⎛

⎜⎝
C(n)

1 (R)
...

C(n)
N (R)

⎞

⎟⎠, (2.2)

where

R ≡ R(t ) = R0 + ϵt (2.3)

is the adiabatically changing parameter with ϵ ≪ 1. In
Eq. (2.1), n stands for the quantum number for each eigen-
value and eigenstate. Let us assume that

! (n)
0 (R(t )) = C(n)(R(t )) exp

(
− i

h̄

∫ t

0
En(R(t ′))dt ′

)
eiξn (R(t ))

(2.4)
is a quasiadiabatic state, i.e., adiabatically evolving state,
where ξn is the adiabatic phase

ξn(R(t )) = i
∫ t

0
dt ′C(n)†∂t C(n) = iϵ

∫ t

0
dt ′C(n)†∂RC(n).

(2.5)

The ! (n)
0 (R(t )) in Eq. (2.4) is not a solution of the TDSE.

To make it satisfy the TDSE, we must regularize the Hamilto-
nian as

H reg
0 (R(t )) = H0(R(t )) + ϵH̃n(R(t )). (2.6)

Then the TDSE becomes

ih̄
∂

∂t
! (n)

0 (R(t )) = (H0 + ϵH̃n)! (n)
0 (R(t )). (2.7)

Here H̃n is the nth state-dependent regularization term. Sub-
stituting ! (n)

0 (R(t )) in Eq. (2.4) into the above TDSE, we see
the eigenvalue problem in Eq. (2.1) of O(ϵ0) and the algebraic
equation for H̃n,

H̃nC(n)(R) = ih̄∂RC(n)(R) − ih̄(C(n)†∂RC(n) )C(n)(R), (2.8)

of O(ϵ1). Equation (2.8) is the core of the present study.
The state (2.4) and TDSE (2.7) are working on a very slow
timescale. We will modify them so that they can work on a
laboratory timescale.

With time t rescaled by the advanced time &(t ), the fast-
forward state is introduced as

! (n)
FF (t ) ≡ ! (n)

0 (R(&(t )))

= C(n)(R(&(t ))) exp
(

− i
h̄

∫ t

0
En(R(&(t ′)))dt ′

)

× eiξn (R(&(t ))), (2.9)

where &(t ) is defined by

&(t ) =
∫ t

0
α(t ′)dt ′, (2.10)

with the standard time t . Here α(t ) is an arbitrary magni-
fication timescale factor which satisfies α(0) = 1, α(t ) > 1
(0 < t < TFF), and α(t ) = 1 (t ! TFF). For a long final time
T in the original adiabatic dynamics, we can consider the
fast-forward dynamics with a new time variable which repro-
duces the target state ! (n)

0 (R(T )) in a shorter final time TFF
defined by

T =
∫ TFF

0
α(t )dt . (2.11)

The simplest expression for α(t ) in the fast-forward range
(0 " t " TFF) is given in [8] as

α(t ) = ᾱ − (ᾱ − 1) cos
(

2π

TFF
t
)

, (2.12)

where ᾱ is the mean value of α(t ) and is given by ᾱ = T/TFF.
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For nonadiabatic processes, !0(R(t)) in Eq. (2.2) does not
satisfy the time-dependent Schrödinger equation (TDSE) and
in order to impose it as the solution of the TDSE, the
Hamiltonian must be regularized as

H
reg
0 (R(t)) = H0(R(t)) + ϵH̃n(R(t)). (2.4)

Then the TDSE becomes

ih̄
∂

∂t
!0(R(t)) = (H0 + ϵH̃n)!0(R(t)). (2.5)

Here H̃n is the nth state-dependent regularization term [2].
Substituting !0(R(t)) in Eq. (2.2) into the above TDSE, we
obtain

ih̄

(
ϵ∂RC − i

h̄
EC − ϵ(C†∂RC)C

)
= H0C + ϵH̃nC,

C ≡

⎛

⎜⎝
C1(R)

...
CN (R)

⎞

⎟⎠. (2.6)

While the O(ϵ0) in the above equality gives the adiabatic
eigenvalue problem in Eq. (2.1), the O(ϵ1) leads to

H̃n

⎛

⎜⎝
C1(R)

...
CN (R)

⎞

⎟⎠ = ih̄

⎛

⎜⎝

∂C1(R)
∂R
...

∂CN (R)
∂R

⎞

⎟⎠

−ih̄

⎛

⎝
N∑

j=1

C∗
j

∂Cj

∂R

⎞

⎠

⎛

⎜⎝
C1(R)

...
CN (R)

⎞

⎟⎠, (2.7)

which is the core equation of the present paper.
The fast-forward state is defined by

!FF (t) =

⎛

⎜⎝
C1(R($(t)))

...
CN (R($(t)))

⎞

⎟⎠ exp
(

− i

h̄

∫ t

0
E((R($(t ′))))dt ′

)

× eiξ (R($(t))), (2.8)

where $(t) is an advanced time defined by

$(t) =
∫ t

0
α(t ′)dt ′, (2.9)

with the standard time t . Here α(t) is a magnification time-
scale factor given by α(0) = 1, α(t) > 1 (0 < t < TFF), and
α(t) = 1 (t ! TFF). We consider the fast-forward dynamics
that reproduces the target state !0(T ) in a shorter final time
TFF defined by

T =
∫ TFF

0
α(t)dt. (2.10)

The explicit expression for α(t) in the fast-forward range
(0 " t " TFF) is typically given [2] as

α(t) = ᾱ − (ᾱ − 1) cos
(

2π

TFF
t

)
, (2.11)

where ᾱ is the mean value of α(t) and is given by ᾱ = T/TFF.
We now take the strategy that a product of the mean

value ᾱ of an infinitely large time-scaling factor α(t) and

an infinitesimally small growth rate ϵ in the quasiadiabatic
parameter should satisfy the constraint that ᾱ · ϵ is finite in the
asymptotic limit ᾱ → ∞ and ϵ → 0. Then, by taking the time
derivative of !FF in Eq. (2.8) and using Eqs. (2.1) and (2.7),
we find (see the Appendix for details)

ih̄
∂!FF

∂t
= H0(R($(t)) + v(t)H̃n(R($(t)))!FF

≡ HFF!FF. (2.12)

Here v(t) is a velocity function available from α(t) in the
asymptotic limit

v(t) = lim
ϵ→0,α→∞

ϵα(t)

= v̄

(
1 − cos

2π

TFF
t

)
, (2.13)

where v̄ = limϵ→0,α→∞ ϵᾱ (finite) is the mean of v(t). Conse-
quently, for 0 " t " TFF,

R($(t)) = R0 + lim
ϵ→0,ᾱ→∞

ε$(t)

= R0 +
∫ t

0
v(t ′)dt ′

= R0 + v̄

[
t − TFF

2π
sin

(
2π

TFF
t

)]
. (2.14)

In Eq. (2.12), HFF is the driving Hamiltonian and H̃n is the
regularization term obtained from Eq. (2.7) to generate the
fast-forward scheme in spin systems.

There is a relation between H̃n in Eq. (2.7) and the
Demirplak-Rice-Berry counterdiabatic term H [5–7]. If there
is an n-independent regularization term H̃ among {H̃n}, we
define H ≡ v(t)H̃(R($(t))) with use of v(t) = ∂R($(t))

∂t
. Then

Eq. (2.7) becomes

HC = ih̄∂tC − ih̄(C†∂tC)C, (2.15)

which can be rewritten as

H|n⟩ = ih̄
∂

∂t
|n⟩ − ih̄|n⟩⟨n| ∂

∂t
|n⟩, (2.16)

where |n⟩ means the nth eigenstate of the Hamiltonian in
Eq. (2.1). Operating both sides of Eq. (2.16) on ⟨n| and
summing over n, we have

H
∑

n

|n⟩⟨n| = ih̄
∑

n

∂

∂t
|n⟩⟨n| − ih̄

∑

n

|n⟩⟨n| ∂

∂t
|n⟩⟨n|.

(2.17)

Noting the completeness condition for the eigenstates∑
n |n⟩⟨n| = 1, we have

H = ih̄
∑

n

(
∂

∂t
|n⟩⟨n| − |n⟩⟨n| ∂

∂t
|n⟩⟨n|

)
, (2.18)

which agrees with the Demirplak-Rice-Berry formula. There-
fore, v(t)H̃(R($(t))) corresponds to the counterdiabatic term.
Using this correspondence, one may call v(t)H̃n(R($(t))) a
state-dependent counterdiabatic term. Hereafter we will be
concerned with the fast forward of the adiabatic dynamics of
one of the adiabatic states (e.g., the ground state) and thereby
the suffix n in H̃n will be suppressed.
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Then, by taking the time derivative of ! (n)
FF in Eq. (2.9)

and using the equalities ∂t C(n)(R(#(t ))) = αϵ∂RC(n) and
∂tξn(R(#(t ))) = iC(n)†∂t C(n) = iαϵC(n)†∂RC(n), we have

ih̄!̇ (n)
FF = {ih̄αϵ[∂RC(n) − (C(n)†∂RC(n) )C(n)] + EC(n)}

× exp
(

− i
h̄

∫ t

0
En(R(#(t ′)))dt ′

)
eiξn (R(#(t ))).

(2.13)

The first and second terms in curly brackets on the
right-hand side are replaced by αϵH̃nC(n)(R(#(t ))) and
H0C(n)(R(#(t ))), respectively, by using Eqs. (2.8) and (2.1).
Using the definition of ! (n)

FF (t ) and taking the asymptotic
limit ᾱ → ∞ and ϵ → 0 under the constraint that ᾱ · ϵ ≡ v̄
is finite, we obtain

ih̄
∂! (n)

FF

∂t
= [H0(R(#(t ))) + v(t )H̃n(R(#(t )))]! (n)

FF

≡ H (n)
FF ! (n)

FF . (2.14)

Here v(t ) is a velocity function available from α(t ) in the
asymptotic limit

v(t ) = lim
ϵ → 0,
ᾱ → ∞

ϵα(t ) = v̄

(
1 − cos

2π

TFF
t
)

. (2.15)

Consequently, for 0 ! t ! TFF,

R(#(t )) = R0 + lim
ϵ → 0,
ᾱ → ∞

ε#(t ) = R0 +
∫ t

0
v(t ′)dt ′

= R0 + v̄

[
t − TFF

2π
sin

(
2π

TFF
t
)]

. (2.16)

Here H (n)
FF is the fast-forward Hamiltonian and H̃n is the

regularization term obtained from Eq. (2.8) to generate the
fast-forward scheme in spin system. Equations (2.9) and
(2.14) work on a laboratory timescale.

There is a relationship between our formula for H̃n in
Eq. (2.8) and the Demirplak-Rice-Berry formula [4–6] for
the CD term H. If there is an n-independent regularization
term H̃ among {H̃n}, we can define H ≡ v(t )H̃ with the use
of v(t ) = ∂R(#(t ))

∂t . Then Eq. (2.8) gives a solution H which
agrees with the Demirplak-Rice-Berry formula for the CD
term (see the proof in [16]). It should be noted, however,
that the above correspondence works well only in the case
that we can find n-independent regularization terms H̃ among
{H̃n}. Using the above notion, one may call v(t )H̃n a state-
dependent CD term. Hereafter we will be concerned with the
fast forward of adiabatic dynamics of one of the adiabatic
states (i.e., the ground state) and therefore the suffix n in H̃n
will be suppressed.

III. FAST-FORWARD DRIVING INTERACTIONS FOR SPIN
CLUSTERS OF VARIOUS GEOMETRIES

To begin with, let us explain the method of solving the
linear algebraic equation for unknown regularization terms
in Eq. (2.8). Then, in the succeeding sections, we will treat
regular spin clusters of various geometries with N up to 4, i.e.,

FIG. 1. (a) Regular triangle and (b) open linear three-spin chain.
Solid lines stand for the original exchange interactions. Dashed and
dotted lines show the pairwise regularization interactions. Each line
species denotes the geometrically identical regularization interaction.

regular triangle and open linear chains for N = 3 spins (see
Fig. 1) and triangular pyramid, square, primary star graph,
and open linear chains for N = 4 spins (see Fig. 2). Our
scheme is free from obtaining all eigenvectors for a given
adiabatic Hamiltonian. As shown in the core Eq. (2.8), we
need information only about a single eigenstate, typically the
ground state.

As an original (reference) model, we choose the transverse
Ising mode, whose Hamiltonian for N spin systems is written
as

H0 = J (R(t ))
∑

(i, j)∈NN

σ z
i σ z

j − 1
2 Bx(R(t ))

N∑

i=1

σ x
i , (3.1)

where J (R(t )) = R(t ) = R0 + ϵt and Bx(R(t )) = B0 − R(t ),
with ϵ ≪ 1, are the adiabatically changing exchange interac-
tion and transverse magnetic field, respectively, and (i, j) ∈
NN denotes nearest-neighboring pairs. Using the spin config-
uration bases, the dimension of Hilbert space is 2N .

The energy matrix corresponding to the Hamiltonian (3.1)
is real symmetric, which makes the eigenstates real, and the
ground state is expressed by the real components {Ck : k =
1, . . . , 2N }. This, in combination with the fact that the length
of the corresponding eigenvector is constant and equal to 1,
leads to the conclusion that the adiabatic phase ξn in Eq. (2.5)
is zero in all spin clusters in the present work. Further, because
of the geometrical symmetry of spin clusters in Figs. 1 and 2,
some of the components Ck are degenerate, which reduces the
number of independent equations in the core Eq. (2.8).

As for the unknown regularization term H̃ in Eq. (2.8),
we must impose a form which makes its matrix elements
pure imaginary because the right-hand side of Eq. (2.8) is
now pure imaginary. Among several possibilities, we assume
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Then, by taking the time derivative of ! (n)
FF in Eq. (2.9)

and using the equalities ∂t C(n)(R(#(t ))) = αϵ∂RC(n) and
∂tξn(R(#(t ))) = iC(n)†∂t C(n) = iαϵC(n)†∂RC(n), we have

ih̄!̇ (n)
FF = {ih̄αϵ[∂RC(n) − (C(n)†∂RC(n) )C(n)] + EC(n)}

× exp
(

− i
h̄

∫ t

0
En(R(#(t ′)))dt ′

)
eiξn (R(#(t ))).

(2.13)

The first and second terms in curly brackets on the
right-hand side are replaced by αϵH̃nC(n)(R(#(t ))) and
H0C(n)(R(#(t ))), respectively, by using Eqs. (2.8) and (2.1).
Using the definition of ! (n)

FF (t ) and taking the asymptotic
limit ᾱ → ∞ and ϵ → 0 under the constraint that ᾱ · ϵ ≡ v̄
is finite, we obtain

ih̄
∂! (n)

FF

∂t
= [H0(R(#(t ))) + v(t )H̃n(R(#(t )))]! (n)

FF

≡ H (n)
FF ! (n)

FF . (2.14)

Here v(t ) is a velocity function available from α(t ) in the
asymptotic limit

v(t ) = lim
ϵ → 0,
ᾱ → ∞

ϵα(t ) = v̄

(
1 − cos

2π

TFF
t
)

. (2.15)

Consequently, for 0 ! t ! TFF,

R(#(t )) = R0 + lim
ϵ → 0,
ᾱ → ∞

ε#(t ) = R0 +
∫ t

0
v(t ′)dt ′

= R0 + v̄

[
t − TFF

2π
sin

(
2π

TFF
t
)]

. (2.16)

Here H (n)
FF is the fast-forward Hamiltonian and H̃n is the

regularization term obtained from Eq. (2.8) to generate the
fast-forward scheme in spin system. Equations (2.9) and
(2.14) work on a laboratory timescale.

There is a relationship between our formula for H̃n in
Eq. (2.8) and the Demirplak-Rice-Berry formula [4–6] for
the CD term H. If there is an n-independent regularization
term H̃ among {H̃n}, we can define H ≡ v(t )H̃ with the use
of v(t ) = ∂R(#(t ))

∂t . Then Eq. (2.8) gives a solution H which
agrees with the Demirplak-Rice-Berry formula for the CD
term (see the proof in [16]). It should be noted, however,
that the above correspondence works well only in the case
that we can find n-independent regularization terms H̃ among
{H̃n}. Using the above notion, one may call v(t )H̃n a state-
dependent CD term. Hereafter we will be concerned with the
fast forward of adiabatic dynamics of one of the adiabatic
states (i.e., the ground state) and therefore the suffix n in H̃n
will be suppressed.

III. FAST-FORWARD DRIVING INTERACTIONS FOR SPIN
CLUSTERS OF VARIOUS GEOMETRIES

To begin with, let us explain the method of solving the
linear algebraic equation for unknown regularization terms
in Eq. (2.8). Then, in the succeeding sections, we will treat
regular spin clusters of various geometries with N up to 4, i.e.,

FIG. 1. (a) Regular triangle and (b) open linear three-spin chain.
Solid lines stand for the original exchange interactions. Dashed and
dotted lines show the pairwise regularization interactions. Each line
species denotes the geometrically identical regularization interaction.

regular triangle and open linear chains for N = 3 spins (see
Fig. 1) and triangular pyramid, square, primary star graph,
and open linear chains for N = 4 spins (see Fig. 2). Our
scheme is free from obtaining all eigenvectors for a given
adiabatic Hamiltonian. As shown in the core Eq. (2.8), we
need information only about a single eigenstate, typically the
ground state.

As an original (reference) model, we choose the transverse
Ising mode, whose Hamiltonian for N spin systems is written
as

H0 = J (R(t ))
∑

(i, j)∈NN

σ z
i σ z

j − 1
2 Bx(R(t ))

N∑

i=1

σ x
i , (3.1)

where J (R(t )) = R(t ) = R0 + ϵt and Bx(R(t )) = B0 − R(t ),
with ϵ ≪ 1, are the adiabatically changing exchange interac-
tion and transverse magnetic field, respectively, and (i, j) ∈
NN denotes nearest-neighboring pairs. Using the spin config-
uration bases, the dimension of Hilbert space is 2N .

The energy matrix corresponding to the Hamiltonian (3.1)
is real symmetric, which makes the eigenstates real, and the
ground state is expressed by the real components {Ck : k =
1, . . . , 2N }. This, in combination with the fact that the length
of the corresponding eigenvector is constant and equal to 1,
leads to the conclusion that the adiabatic phase ξn in Eq. (2.5)
is zero in all spin clusters in the present work. Further, because
of the geometrical symmetry of spin clusters in Figs. 1 and 2,
some of the components Ck are degenerate, which reduces the
number of independent equations in the core Eq. (2.8).

As for the unknown regularization term H̃ in Eq. (2.8),
we must impose a form which makes its matrix elements
pure imaginary because the right-hand side of Eq. (2.8) is
now pure imaginary. Among several possibilities, we assume
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Here v(t) is a velocity function available from ↵(t) in the

asymptotic limit:

v(t) = lim
✏!0,↵!1

✏↵(t) (2.14)

= v̄

✓
1� cos

2⇡

T
FF

t

◆
,

where v̄ = lim
✏!0,↵!1 ✏↵̄(= finite) is the mean of v(t).

Consequently

R(⇤(t)) = R0 + lim
✏!0,↵̄!1

"⇤(t)

= R0 +

Z
t

0
v(t0)dt0

= R0 + v̄


t� T

FF

2⇡
sin

✓
2⇡

T
FF

t

◆�
,

for 0  t  T
FF

. (2.15)

H
FF

is the driving Hamiltonian and H̃
n

is the regular-

ization term obtained from Eq.(2.7) to generate the fast-

forward scheme in spin system.

There is a relation between H̃
n

in Eq.(2.7) and

Demirplak-Rice-Berry’s counter-diabatic termH [5–7]. If

there is an n-independent regularization term H̃ among

{H̃
n

}, we define H ⌘ v(t)H̃(R(⇤(t))) with use of v(t) =
@R(⇤(t))

@t

. Then Eq.(2.7) becomes

H 0 = i~ @

@t
 0 � i~

NX

j=1

C⇤
j

@C
j

@t
 0, (2.16)

which can be rewritten as

H|ni = i~ @

@t
|ni � i~|nihn| @

@t
|ni, (2.17)

where |ni means the n-th eigenstate of the Hamiltonian

in Eq.(2.1). Operating both side of Eq.(2.17) on hn|, and
summing over n, we have

H
X

n

|nihn| = i~
X

n

@

@t
|nihn|� i~

X

n

|nihn| @
@t

|nihn|.
(2.18)

Noting the completeness condition for the eigenstates :P
n

|nihn| = 1, we have

H = i~
X

n

✓
@

@t
|nihn|� |nihn| @

@t
|nihn|

◆
, (2.19)

which agrees with Demirplak-Rice-Berry’s formula.

Therefore v(t)H̃(R(⇤(t))) corresponds to the counter-

diabatic term. Using this correspondence, one may call

v(t)H̃
n

(R(⇤(t))) as a state-dependent counter-diabatic

term. Hereafter we shall be concerned with the fast for-

ward of adiabatic dynamics of one of the adiabatic states

(e.g., the ground state), and thereby the su�x n in H̃
n

will be suppressed.

Note: Demirplak-Rice-Berry(DRB)’s counter-

diabatic(CD) term is state-independent by nature,

and can also be reproduced by the inverse engineering

[26] based on the Lewis-Riesenfeld’s invariant theory [8].

Inspired by the works [12, 27] on a streamlined version

of the fast-forward method, Patra and Jarzynski [28]

proposed a framework for constructing STA from the

velocity and acceleration flow field which characterizes

the adiabatic evolution, providing compact expressions

for both CD term and fast-forward potentials. Since

the flow field is uniquely defined using each adiabatic

eigenstate, there appears only one state-dependent

CD term, which is not equivalent to DRB’s CD term,

although the equivalence will be recovered if two kind of

CD terms will be projected onto each of adiabatic states.

By contrast, our formalism here can generate plural

number of sate-dependent CD terms for each adiabatic

state, which can include a state-independent one.

Now we investigate a single spin system in our scheme,

and show the fast forward of adiabatic dynamics in

Landau-Zener (LZ) model [29, 30]. We consider a mag-

netic field :

B(t) =

0

B@
�

0

R(t)

1

CA , (2.20)

where � is a constant. The Hamiltonian is given by

H0(R(t)) =
1

2
� ·B =

1

2

 
R(t) �

� �R(t)

!
(2.21)

with the eigenvalues �± = ±
p
R

2+�2

2 and eigenstates

 ±
0 =

 
C±

1

C±
2

!
=

 
��/s±

R⌥
p
R

2+�2

s±

!
, (2.22)

where

s± ⌘
h
2
p

R2 +�2
⇣p

R2 +�2 ⌥R
⌘i1/2

. (2.23)

Now we choose one of the states with �+ and  +
0 , and

consider the adiabatic dynamics where R = R0+ ✏t. The

adiabatically evolving state is :

 0(t) =

 
� �

s+

R�
p
R

2+�2

s+

!
e�

i

~
R

t

0

p
R

2+�2

2 dt

0
e⇠(t). (2.24)

Noting that H̃
ij

is traceless (H̃11 = - H̃22) and Hermitian

(H̃⇤
21 =H̃12), Eq.(2.7) constitutes a rank = 2 linear alge-

braic equation for two unknowns (H̃11 and H̃12). With

3

Here v(t) is a velocity function available from ↵(t) in the

asymptotic limit:
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where v̄ = lim
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Consequently
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is the driving Hamiltonian and H̃
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is the regular-

ization term obtained from Eq.(2.7) to generate the fast-

forward scheme in spin system.

There is a relation between H̃
n

in Eq.(2.7) and

Demirplak-Rice-Berry’s counter-diabatic termH [5–7]. If

there is an n-independent regularization term H̃ among

{H̃
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}, we define H ⌘ v(t)H̃(R(⇤(t))) with use of v(t) =
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. Then Eq.(2.7) becomes
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which can be rewritten as
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where |ni means the n-th eigenstate of the Hamiltonian

in Eq.(2.1). Operating both side of Eq.(2.17) on hn|, and
summing over n, we have
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|nihn| = 1, we have
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which agrees with Demirplak-Rice-Berry’s formula.

Therefore v(t)H̃(R(⇤(t))) corresponds to the counter-

diabatic term. Using this correspondence, one may call

v(t)H̃
n

(R(⇤(t))) as a state-dependent counter-diabatic

term. Hereafter we shall be concerned with the fast for-

ward of adiabatic dynamics of one of the adiabatic states

(e.g., the ground state), and thereby the su�x n in H̃
n

will be suppressed.

Note: Demirplak-Rice-Berry(DRB)’s counter-

diabatic(CD) term is state-independent by nature,

and can also be reproduced by the inverse engineering

[26] based on the Lewis-Riesenfeld’s invariant theory [8].

Inspired by the works [12, 27] on a streamlined version

of the fast-forward method, Patra and Jarzynski [28]

proposed a framework for constructing STA from the

velocity and acceleration flow field which characterizes

the adiabatic evolution, providing compact expressions

for both CD term and fast-forward potentials. Since

the flow field is uniquely defined using each adiabatic

eigenstate, there appears only one state-dependent

CD term, which is not equivalent to DRB’s CD term,

although the equivalence will be recovered if two kind of

CD terms will be projected onto each of adiabatic states.

By contrast, our formalism here can generate plural

number of sate-dependent CD terms for each adiabatic

state, which can include a state-independent one.

Now we investigate a single spin system in our scheme,

and show the fast forward of adiabatic dynamics in

Landau-Zener (LZ) model [29, 30]. We consider a mag-

netic field :

B(t) =

0

B@
�

0

R(t)

1

CA , (2.20)

where � is a constant. The Hamiltonian is given by

H0(R(t)) =
1

2
� ·B =

1

2

 
R(t) �
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!
(2.21)

with the eigenvalues �± = ±
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where
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Now we choose one of the states with �+ and  +
0 , and

consider the adiabatic dynamics where R = R0+ ✏t. The

adiabatically evolving state is :

 0(t) =
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Noting that H̃
ij

is traceless (H̃11 = - H̃22) and Hermitian

(H̃⇤
21 =H̃12), Eq.(2.7) constitutes a rank = 2 linear alge-

braic equation for two unknowns (H̃11 and H̃12). With

Time scaling factor is now replaced by velocity function as
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Then, by taking the time derivative of ! (n)
FF in Eq. (2.9)

and using the equalities ∂t C(n)(R(#(t ))) = αϵ∂RC(n) and
∂tξn(R(#(t ))) = iC(n)†∂t C(n) = iαϵC(n)†∂RC(n), we have

ih̄!̇ (n)
FF = {ih̄αϵ[∂RC(n) − (C(n)†∂RC(n) )C(n)] + EC(n)}

× exp
(

− i
h̄

∫ t

0
En(R(#(t ′)))dt ′

)
eiξn (R(#(t ))).

(2.13)

The first and second terms in curly brackets on the
right-hand side are replaced by αϵH̃nC(n)(R(#(t ))) and
H0C(n)(R(#(t ))), respectively, by using Eqs. (2.8) and (2.1).
Using the definition of ! (n)

FF (t ) and taking the asymptotic
limit ᾱ → ∞ and ϵ → 0 under the constraint that ᾱ · ϵ ≡ v̄
is finite, we obtain

ih̄
∂! (n)

FF

∂t
= [H0(R(#(t ))) + v(t )H̃n(R(#(t )))]! (n)

FF

≡ H (n)
FF ! (n)

FF . (2.14)

Here v(t ) is a velocity function available from α(t ) in the
asymptotic limit

v(t ) = lim
ϵ → 0,
ᾱ → ∞

ϵα(t ) = v̄

(
1 − cos

2π

TFF
t
)

. (2.15)

Consequently, for 0 ! t ! TFF,

R(#(t )) = R0 + lim
ϵ → 0,
ᾱ → ∞

ε#(t ) = R0 +
∫ t

0
v(t ′)dt ′

= R0 + v̄

[
t − TFF

2π
sin

(
2π

TFF
t
)]

. (2.16)

Here H (n)
FF is the fast-forward Hamiltonian and H̃n is the

regularization term obtained from Eq. (2.8) to generate the
fast-forward scheme in spin system. Equations (2.9) and
(2.14) work on a laboratory timescale.

There is a relationship between our formula for H̃n in
Eq. (2.8) and the Demirplak-Rice-Berry formula [4–6] for
the CD term H. If there is an n-independent regularization
term H̃ among {H̃n}, we can define H ≡ v(t )H̃ with the use
of v(t ) = ∂R(#(t ))

∂t . Then Eq. (2.8) gives a solution H which
agrees with the Demirplak-Rice-Berry formula for the CD
term (see the proof in [16]). It should be noted, however,
that the above correspondence works well only in the case
that we can find n-independent regularization terms H̃ among
{H̃n}. Using the above notion, one may call v(t )H̃n a state-
dependent CD term. Hereafter we will be concerned with the
fast forward of adiabatic dynamics of one of the adiabatic
states (i.e., the ground state) and therefore the suffix n in H̃n
will be suppressed.

III. FAST-FORWARD DRIVING INTERACTIONS FOR SPIN
CLUSTERS OF VARIOUS GEOMETRIES

To begin with, let us explain the method of solving the
linear algebraic equation for unknown regularization terms
in Eq. (2.8). Then, in the succeeding sections, we will treat
regular spin clusters of various geometries with N up to 4, i.e.,

FIG. 1. (a) Regular triangle and (b) open linear three-spin chain.
Solid lines stand for the original exchange interactions. Dashed and
dotted lines show the pairwise regularization interactions. Each line
species denotes the geometrically identical regularization interaction.

regular triangle and open linear chains for N = 3 spins (see
Fig. 1) and triangular pyramid, square, primary star graph,
and open linear chains for N = 4 spins (see Fig. 2). Our
scheme is free from obtaining all eigenvectors for a given
adiabatic Hamiltonian. As shown in the core Eq. (2.8), we
need information only about a single eigenstate, typically the
ground state.

As an original (reference) model, we choose the transverse
Ising mode, whose Hamiltonian for N spin systems is written
as

H0 = J (R(t ))
∑

(i, j)∈NN

σ z
i σ z

j − 1
2 Bx(R(t ))

N∑

i=1

σ x
i , (3.1)

where J (R(t )) = R(t ) = R0 + ϵt and Bx(R(t )) = B0 − R(t ),
with ϵ ≪ 1, are the adiabatically changing exchange interac-
tion and transverse magnetic field, respectively, and (i, j) ∈
NN denotes nearest-neighboring pairs. Using the spin config-
uration bases, the dimension of Hilbert space is 2N .

The energy matrix corresponding to the Hamiltonian (3.1)
is real symmetric, which makes the eigenstates real, and the
ground state is expressed by the real components {Ck : k =
1, . . . , 2N }. This, in combination with the fact that the length
of the corresponding eigenvector is constant and equal to 1,
leads to the conclusion that the adiabatic phase ξn in Eq. (2.5)
is zero in all spin clusters in the present work. Further, because
of the geometrical symmetry of spin clusters in Figs. 1 and 2,
some of the components Ck are degenerate, which reduces the
number of independent equations in the core Eq. (2.8).

As for the unknown regularization term H̃ in Eq. (2.8),
we must impose a form which makes its matrix elements
pure imaginary because the right-hand side of Eq. (2.8) is
now pure imaginary. Among several possibilities, we assume

062116-3



SETIAWAN, GUNARA, AVAZBAEV, AND NAKAMURA PHYSICAL REVIEW A 99, 062116 (2019)

FIG. 2. (a) Triangular pyramid, (b) square, (c) primary star
graph, and (d) open linear four-spin chain. Solid lines stand for
the original exchange interactions. Dashed, dotted, dot-dashed, and
double-dot–dashed lines show the pairwise regularization interac-
tions. Each line species denotes the geometrically identical regular-
ization interaction.

the regularization term consisting of pairwise interactions de-
scribed by W̃ yz

i j = W̃ yz
i j (ϵt ) and three-body interactions Q̃xyz

i jk =
Q̃xyz

i jk (ϵt ). Other possible contributions such as a single-particle
energy due to the y component of the magnetic field (B̃y),
pairwise interaction W̃ xy

i j , and three-body interaction Q̃xxy
i jk lead

to an incompatible algebraic equation (2.8) and should be
excluded. The candidate for the regularization Hamiltonian H̃
then takes the form

H̃ =
∑

(i, j)∈all

W̃ yz
i j

(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

Q̃xyz
i jk

(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k , (3.2)

where (i, j) ∈ all and (i, j, k) ∈ all represent all possible com-
binations (not permutations) and are not limited to nearest
neighbors. The three-body interaction here is not a result of
the truncation of long-range and multibody counterdiabatic
interactions but is introduced in advance to make the core
equation solvable.

Since regular spin clusters have geometric symmetry, some
of the interactions (W̃ yz

i j ) are degenerate, as shown in Figs. 1
and 2, and the reduced number of independent interactions
should be equal to the number of independent equations in
Eq. (2.8). In the present paper, the three-body interaction will
play a subsidiary role. Below we will solve the regularization
terms and obtain the fast-forward Hamiltonian for spin clus-
ters of various geometries.

IV. REGULAR TRIANGLE AND OPEN LINEAR
THREE-SPIN CHAINS

In this section we investigate a regular triangle and open
linear three-spin chains in Fig. 1. We use the spin config-
uration bases as |1⟩ = |↑ ↑↑⟩, |2⟩ = |↑ ↑↓⟩, |3⟩ = |↑ ↓↑⟩,
|4⟩ = |↓ ↑↑⟩, |5⟩ = |↑ ↓↓⟩, |6⟩ = |↓ ↑↓⟩, |7⟩ = |↓ ↓↑⟩, and
|8⟩ = |↓ ↓↓⟩.

A. Regular triangle

In the case of the regular triangle, the eigenvalue for the
ground state is E0 = −

√
B2

x + 2BxJ + 4J2 − Bx
2 + J . We have

confirmed in Fig. 3(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state are
C1 = V1ζ , C2 = V2ζ , C3 = V3ζ , C4 = V4ζ , C5 = V5ζ , C6 =
V6ζ , C7 = V7ζ , and C8 = V8ζ , where V1 = V8 = 1, V2 = V3 =
V4 = V5 = V6 = V7 = 2

√
B2

x+2BxJ+4J2+Bx+4J
3Bx

, and ζ = 1√
2+6V 2

2

.

Here we see the symmetry C1 = C8 and C2 = C3 = C4 =
C5 = C6 = C7. From the R derivative of the normalization
(
∑8

j=1 C2
j = 2C2

1 + 6C2
2 = 1), we see that

C1
∂C1

∂R
+ 3C2

∂C2

∂R
= 0, (4.1)

and then the adiabatic phase ξ = 0.
As for the regularization Hamiltonian for the regular

triangle, we can proceed without having recourse to the
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FIG. 2. (a) Triangular pyramid, (b) square, (c) primary star
graph, and (d) open linear four-spin chain. Solid lines stand for
the original exchange interactions. Dashed, dotted, dot-dashed, and
double-dot–dashed lines show the pairwise regularization interac-
tions. Each line species denotes the geometrically identical regular-
ization interaction.

the regularization term consisting of pairwise interactions de-
scribed by W̃ yz

i j = W̃ yz
i j (ϵt ) and three-body interactions Q̃xyz

i jk =
Q̃xyz

i jk (ϵt ). Other possible contributions such as a single-particle
energy due to the y component of the magnetic field (B̃y),
pairwise interaction W̃ xy

i j , and three-body interaction Q̃xxy
i jk lead

to an incompatible algebraic equation (2.8) and should be
excluded. The candidate for the regularization Hamiltonian H̃
then takes the form

H̃ =
∑

(i, j)∈all

W̃ yz
i j

(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

Q̃xyz
i jk

(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k , (3.2)

where (i, j) ∈ all and (i, j, k) ∈ all represent all possible com-
binations (not permutations) and are not limited to nearest
neighbors. The three-body interaction here is not a result of
the truncation of long-range and multibody counterdiabatic
interactions but is introduced in advance to make the core
equation solvable.

Since regular spin clusters have geometric symmetry, some
of the interactions (W̃ yz

i j ) are degenerate, as shown in Figs. 1
and 2, and the reduced number of independent interactions
should be equal to the number of independent equations in
Eq. (2.8). In the present paper, the three-body interaction will
play a subsidiary role. Below we will solve the regularization
terms and obtain the fast-forward Hamiltonian for spin clus-
ters of various geometries.

IV. REGULAR TRIANGLE AND OPEN LINEAR
THREE-SPIN CHAINS

In this section we investigate a regular triangle and open
linear three-spin chains in Fig. 1. We use the spin config-
uration bases as |1⟩ = |↑ ↑↑⟩, |2⟩ = |↑ ↑↓⟩, |3⟩ = |↑ ↓↑⟩,
|4⟩ = |↓ ↑↑⟩, |5⟩ = |↑ ↓↓⟩, |6⟩ = |↓ ↑↓⟩, |7⟩ = |↓ ↓↑⟩, and
|8⟩ = |↓ ↓↓⟩.

A. Regular triangle

In the case of the regular triangle, the eigenvalue for the
ground state is E0 = −

√
B2

x + 2BxJ + 4J2 − Bx
2 + J . We have

confirmed in Fig. 3(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state are
C1 = V1ζ , C2 = V2ζ , C3 = V3ζ , C4 = V4ζ , C5 = V5ζ , C6 =
V6ζ , C7 = V7ζ , and C8 = V8ζ , where V1 = V8 = 1, V2 = V3 =
V4 = V5 = V6 = V7 = 2

√
B2

x+2BxJ+4J2+Bx+4J
3Bx

, and ζ = 1√
2+6V 2

2

.

Here we see the symmetry C1 = C8 and C2 = C3 = C4 =
C5 = C6 = C7. From the R derivative of the normalization
(
∑8

j=1 C2
j = 2C2

1 + 6C2
2 = 1), we see that

C1
∂C1

∂R
+ 3C2

∂C2

∂R
= 0, (4.1)

and then the adiabatic phase ξ = 0.
As for the regularization Hamiltonian for the regular

triangle, we can proceed without having recourse to the
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Then, by taking the time derivative of ! (n)
FF in Eq. (2.9)

and using the equalities ∂t C(n)(R(#(t ))) = αϵ∂RC(n) and
∂tξn(R(#(t ))) = iC(n)†∂t C(n) = iαϵC(n)†∂RC(n), we have

ih̄!̇ (n)
FF = {ih̄αϵ[∂RC(n) − (C(n)†∂RC(n) )C(n)] + EC(n)}

× exp
(

− i
h̄

∫ t

0
En(R(#(t ′)))dt ′

)
eiξn (R(#(t ))).

(2.13)

The first and second terms in curly brackets on the
right-hand side are replaced by αϵH̃nC(n)(R(#(t ))) and
H0C(n)(R(#(t ))), respectively, by using Eqs. (2.8) and (2.1).
Using the definition of ! (n)

FF (t ) and taking the asymptotic
limit ᾱ → ∞ and ϵ → 0 under the constraint that ᾱ · ϵ ≡ v̄
is finite, we obtain

ih̄
∂! (n)

FF

∂t
= [H0(R(#(t ))) + v(t )H̃n(R(#(t )))]! (n)

FF

≡ H (n)
FF ! (n)

FF . (2.14)

Here v(t ) is a velocity function available from α(t ) in the
asymptotic limit

v(t ) = lim
ϵ → 0,
ᾱ → ∞

ϵα(t ) = v̄

(
1 − cos

2π

TFF
t
)

. (2.15)

Consequently, for 0 ! t ! TFF,

R(#(t )) = R0 + lim
ϵ → 0,
ᾱ → ∞

ε#(t ) = R0 +
∫ t

0
v(t ′)dt ′

= R0 + v̄

[
t − TFF

2π
sin

(
2π

TFF
t
)]

. (2.16)

Here H (n)
FF is the fast-forward Hamiltonian and H̃n is the

regularization term obtained from Eq. (2.8) to generate the
fast-forward scheme in spin system. Equations (2.9) and
(2.14) work on a laboratory timescale.

There is a relationship between our formula for H̃n in
Eq. (2.8) and the Demirplak-Rice-Berry formula [4–6] for
the CD term H. If there is an n-independent regularization
term H̃ among {H̃n}, we can define H ≡ v(t )H̃ with the use
of v(t ) = ∂R(#(t ))

∂t . Then Eq. (2.8) gives a solution H which
agrees with the Demirplak-Rice-Berry formula for the CD
term (see the proof in [16]). It should be noted, however,
that the above correspondence works well only in the case
that we can find n-independent regularization terms H̃ among
{H̃n}. Using the above notion, one may call v(t )H̃n a state-
dependent CD term. Hereafter we will be concerned with the
fast forward of adiabatic dynamics of one of the adiabatic
states (i.e., the ground state) and therefore the suffix n in H̃n
will be suppressed.

III. FAST-FORWARD DRIVING INTERACTIONS FOR SPIN
CLUSTERS OF VARIOUS GEOMETRIES

To begin with, let us explain the method of solving the
linear algebraic equation for unknown regularization terms
in Eq. (2.8). Then, in the succeeding sections, we will treat
regular spin clusters of various geometries with N up to 4, i.e.,

FIG. 1. (a) Regular triangle and (b) open linear three-spin chain.
Solid lines stand for the original exchange interactions. Dashed and
dotted lines show the pairwise regularization interactions. Each line
species denotes the geometrically identical regularization interaction.

regular triangle and open linear chains for N = 3 spins (see
Fig. 1) and triangular pyramid, square, primary star graph,
and open linear chains for N = 4 spins (see Fig. 2). Our
scheme is free from obtaining all eigenvectors for a given
adiabatic Hamiltonian. As shown in the core Eq. (2.8), we
need information only about a single eigenstate, typically the
ground state.

As an original (reference) model, we choose the transverse
Ising mode, whose Hamiltonian for N spin systems is written
as

H0 = J (R(t ))
∑

(i, j)∈NN

σ z
i σ z

j − 1
2 Bx(R(t ))

N∑

i=1

σ x
i , (3.1)

where J (R(t )) = R(t ) = R0 + ϵt and Bx(R(t )) = B0 − R(t ),
with ϵ ≪ 1, are the adiabatically changing exchange interac-
tion and transverse magnetic field, respectively, and (i, j) ∈
NN denotes nearest-neighboring pairs. Using the spin config-
uration bases, the dimension of Hilbert space is 2N .

The energy matrix corresponding to the Hamiltonian (3.1)
is real symmetric, which makes the eigenstates real, and the
ground state is expressed by the real components {Ck : k =
1, . . . , 2N }. This, in combination with the fact that the length
of the corresponding eigenvector is constant and equal to 1,
leads to the conclusion that the adiabatic phase ξn in Eq. (2.5)
is zero in all spin clusters in the present work. Further, because
of the geometrical symmetry of spin clusters in Figs. 1 and 2,
some of the components Ck are degenerate, which reduces the
number of independent equations in the core Eq. (2.8).

As for the unknown regularization term H̃ in Eq. (2.8),
we must impose a form which makes its matrix elements
pure imaginary because the right-hand side of Eq. (2.8) is
now pure imaginary. Among several possibilities, we assume
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FIG. 2. (a) Triangular pyramid, (b) square, (c) primary star
graph, and (d) open linear four-spin chain. Solid lines stand for
the original exchange interactions. Dashed, dotted, dot-dashed, and
double-dot–dashed lines show the pairwise regularization interac-
tions. Each line species denotes the geometrically identical regular-
ization interaction.

the regularization term consisting of pairwise interactions de-
scribed by W̃ yz

i j = W̃ yz
i j (ϵt ) and three-body interactions Q̃xyz

i jk =
Q̃xyz

i jk (ϵt ). Other possible contributions such as a single-particle
energy due to the y component of the magnetic field (B̃y),
pairwise interaction W̃ xy

i j , and three-body interaction Q̃xxy
i jk lead

to an incompatible algebraic equation (2.8) and should be
excluded. The candidate for the regularization Hamiltonian H̃
then takes the form

H̃ =
∑

(i, j)∈all

W̃ yz
i j

(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

Q̃xyz
i jk

(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k , (3.2)

where (i, j) ∈ all and (i, j, k) ∈ all represent all possible com-
binations (not permutations) and are not limited to nearest
neighbors. The three-body interaction here is not a result of
the truncation of long-range and multibody counterdiabatic
interactions but is introduced in advance to make the core
equation solvable.

Since regular spin clusters have geometric symmetry, some
of the interactions (W̃ yz

i j ) are degenerate, as shown in Figs. 1
and 2, and the reduced number of independent interactions
should be equal to the number of independent equations in
Eq. (2.8). In the present paper, the three-body interaction will
play a subsidiary role. Below we will solve the regularization
terms and obtain the fast-forward Hamiltonian for spin clus-
ters of various geometries.

IV. REGULAR TRIANGLE AND OPEN LINEAR
THREE-SPIN CHAINS

In this section we investigate a regular triangle and open
linear three-spin chains in Fig. 1. We use the spin config-
uration bases as |1⟩ = |↑ ↑↑⟩, |2⟩ = |↑ ↑↓⟩, |3⟩ = |↑ ↓↑⟩,
|4⟩ = |↓ ↑↑⟩, |5⟩ = |↑ ↓↓⟩, |6⟩ = |↓ ↑↓⟩, |7⟩ = |↓ ↓↑⟩, and
|8⟩ = |↓ ↓↓⟩.

A. Regular triangle

In the case of the regular triangle, the eigenvalue for the
ground state is E0 = −

√
B2

x + 2BxJ + 4J2 − Bx
2 + J . We have

confirmed in Fig. 3(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state are
C1 = V1ζ , C2 = V2ζ , C3 = V3ζ , C4 = V4ζ , C5 = V5ζ , C6 =
V6ζ , C7 = V7ζ , and C8 = V8ζ , where V1 = V8 = 1, V2 = V3 =
V4 = V5 = V6 = V7 = 2

√
B2

x+2BxJ+4J2+Bx+4J
3Bx

, and ζ = 1√
2+6V 2

2

.

Here we see the symmetry C1 = C8 and C2 = C3 = C4 =
C5 = C6 = C7. From the R derivative of the normalization
(
∑8

j=1 C2
j = 2C2

1 + 6C2
2 = 1), we see that

C1
∂C1

∂R
+ 3C2

∂C2

∂R
= 0, (4.1)

and then the adiabatic phase ξ = 0.
As for the regularization Hamiltonian for the regular

triangle, we can proceed without having recourse to the
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FIG. 2. (a) Triangular pyramid, (b) square, (c) primary star
graph, and (d) open linear four-spin chain. Solid lines stand for
the original exchange interactions. Dashed, dotted, dot-dashed, and
double-dot–dashed lines show the pairwise regularization interac-
tions. Each line species denotes the geometrically identical regular-
ization interaction.

the regularization term consisting of pairwise interactions de-
scribed by W̃ yz

i j = W̃ yz
i j (ϵt ) and three-body interactions Q̃xyz

i jk =
Q̃xyz

i jk (ϵt ). Other possible contributions such as a single-particle
energy due to the y component of the magnetic field (B̃y),
pairwise interaction W̃ xy

i j , and three-body interaction Q̃xxy
i jk lead

to an incompatible algebraic equation (2.8) and should be
excluded. The candidate for the regularization Hamiltonian H̃
then takes the form

H̃ =
∑

(i, j)∈all

W̃ yz
i j

(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

Q̃xyz
i jk

(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k , (3.2)

where (i, j) ∈ all and (i, j, k) ∈ all represent all possible com-
binations (not permutations) and are not limited to nearest
neighbors. The three-body interaction here is not a result of
the truncation of long-range and multibody counterdiabatic
interactions but is introduced in advance to make the core
equation solvable.

Since regular spin clusters have geometric symmetry, some
of the interactions (W̃ yz

i j ) are degenerate, as shown in Figs. 1
and 2, and the reduced number of independent interactions
should be equal to the number of independent equations in
Eq. (2.8). In the present paper, the three-body interaction will
play a subsidiary role. Below we will solve the regularization
terms and obtain the fast-forward Hamiltonian for spin clus-
ters of various geometries.

IV. REGULAR TRIANGLE AND OPEN LINEAR
THREE-SPIN CHAINS

In this section we investigate a regular triangle and open
linear three-spin chains in Fig. 1. We use the spin config-
uration bases as |1⟩ = |↑ ↑↑⟩, |2⟩ = |↑ ↑↓⟩, |3⟩ = |↑ ↓↑⟩,
|4⟩ = |↓ ↑↑⟩, |5⟩ = |↑ ↓↓⟩, |6⟩ = |↓ ↑↓⟩, |7⟩ = |↓ ↓↑⟩, and
|8⟩ = |↓ ↓↓⟩.

A. Regular triangle

In the case of the regular triangle, the eigenvalue for the
ground state is E0 = −

√
B2

x + 2BxJ + 4J2 − Bx
2 + J . We have

confirmed in Fig. 3(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state are
C1 = V1ζ , C2 = V2ζ , C3 = V3ζ , C4 = V4ζ , C5 = V5ζ , C6 =
V6ζ , C7 = V7ζ , and C8 = V8ζ , where V1 = V8 = 1, V2 = V3 =
V4 = V5 = V6 = V7 = 2

√
B2

x+2BxJ+4J2+Bx+4J
3Bx

, and ζ = 1√
2+6V 2

2

.

Here we see the symmetry C1 = C8 and C2 = C3 = C4 =
C5 = C6 = C7. From the R derivative of the normalization
(
∑8

j=1 C2
j = 2C2

1 + 6C2
2 = 1), we see that

C1
∂C1

∂R
+ 3C2

∂C2

∂R
= 0, (4.1)

and then the adiabatic phase ξ = 0.
As for the regularization Hamiltonian for the regular

triangle, we can proceed without having recourse to the
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FIG. 2. (a) Triangular pyramid, (b) square, (c) primary star
graph, and (d) open linear four-spin chain. Solid lines stand for
the original exchange interactions. Dashed, dotted, dot-dashed, and
double-dot–dashed lines show the pairwise regularization interac-
tions. Each line species denotes the geometrically identical regular-
ization interaction.

the regularization term consisting of pairwise interactions de-
scribed by W̃ yz

i j = W̃ yz
i j (ϵt ) and three-body interactions Q̃xyz

i jk =
Q̃xyz

i jk (ϵt ). Other possible contributions such as a single-particle
energy due to the y component of the magnetic field (B̃y),
pairwise interaction W̃ xy

i j , and three-body interaction Q̃xxy
i jk lead

to an incompatible algebraic equation (2.8) and should be
excluded. The candidate for the regularization Hamiltonian H̃
then takes the form

H̃ =
∑

(i, j)∈all

W̃ yz
i j

(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

Q̃xyz
i jk

(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k , (3.2)

where (i, j) ∈ all and (i, j, k) ∈ all represent all possible com-
binations (not permutations) and are not limited to nearest
neighbors. The three-body interaction here is not a result of
the truncation of long-range and multibody counterdiabatic
interactions but is introduced in advance to make the core
equation solvable.

Since regular spin clusters have geometric symmetry, some
of the interactions (W̃ yz

i j ) are degenerate, as shown in Figs. 1
and 2, and the reduced number of independent interactions
should be equal to the number of independent equations in
Eq. (2.8). In the present paper, the three-body interaction will
play a subsidiary role. Below we will solve the regularization
terms and obtain the fast-forward Hamiltonian for spin clus-
ters of various geometries.

IV. REGULAR TRIANGLE AND OPEN LINEAR
THREE-SPIN CHAINS

In this section we investigate a regular triangle and open
linear three-spin chains in Fig. 1. We use the spin config-
uration bases as |1⟩ = |↑ ↑↑⟩, |2⟩ = |↑ ↑↓⟩, |3⟩ = |↑ ↓↑⟩,
|4⟩ = |↓ ↑↑⟩, |5⟩ = |↑ ↓↓⟩, |6⟩ = |↓ ↑↓⟩, |7⟩ = |↓ ↓↑⟩, and
|8⟩ = |↓ ↓↓⟩.

A. Regular triangle

In the case of the regular triangle, the eigenvalue for the
ground state is E0 = −

√
B2

x + 2BxJ + 4J2 − Bx
2 + J . We have

confirmed in Fig. 3(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state are
C1 = V1ζ , C2 = V2ζ , C3 = V3ζ , C4 = V4ζ , C5 = V5ζ , C6 =
V6ζ , C7 = V7ζ , and C8 = V8ζ , where V1 = V8 = 1, V2 = V3 =
V4 = V5 = V6 = V7 = 2

√
B2

x+2BxJ+4J2+Bx+4J
3Bx

, and ζ = 1√
2+6V 2

2

.

Here we see the symmetry C1 = C8 and C2 = C3 = C4 =
C5 = C6 = C7. From the R derivative of the normalization
(
∑8

j=1 C2
j = 2C2

1 + 6C2
2 = 1), we see that

C1
∂C1

∂R
+ 3C2

∂C2

∂R
= 0, (4.1)

and then the adiabatic phase ξ = 0.
As for the regularization Hamiltonian for the regular

triangle, we can proceed without having recourse to the

062116-4

FAST-FORWARD APPROACH TO ADIABATIC QUANTUM … PHYSICAL REVIEW A 99, 062116 (2019)

FIG. 3. Time dependence in the case of the regular triangle
in the fast-forward time range where we choose J = R(!(t )) and
Bx = B0 − R(!(t )), with R(!(t )) defined in Eq. (2.16). The other
parameters are B0 = 10, v̄ = 100, TFF = 0.1, and R0 = 0. (a) All
eight eigenvalues. From the bottom, the second and fourth lines are
doubly degenerate. (b) Regularization term v(t )W̃ . (c) Probability
amplitudes for the solution "FF(t ) of the TDSE: |CFF

2 |2 = |CFF
3 |2 =

|CFF
4 |2 = |CFF

5 |2 = |CFF
6 |2 = |CFF

7 |2 (solid line) and |CFF
1 |2 = |CFF

8 |2
(dashed line).

three-body interaction. Three W̃ yz
i j ’s should be identical due to

the triangular symmetry in Fig. 1(a). Therefore, the unknown
pairwise interaction is the only one, W̃ ≡ W̃ yz

i j , independent of
the pairs (i, j).

By using the spin configuration bases as above, the reg-
ularization Hamiltonian (3.2) is characterized by the ma-
trix elements: H̃1 j = −H̃ j1 = −2iW̃ with j = 2, 3, 4, H̃8 j =
−H̃ j8 = −2iW̃ with j = 5, 6, 7, and all other elements equal
to zero. The explicit expression for H̃ will help us solve
Eq. (2.8).

Due to the symmetry of {Cj}, there are only two indepen-
dent equations in Eq. (2.8):

−6W̃C2 = h̄
∂C1

∂R
, 2W̃C1 = h̄

∂C2

∂R
. (4.2)

Noting the normalization-assisted relation in Eq. (4.1), one
of Eqs. (4.2) becomes trivial and Eqs. (4.2) have the

FIG. 4. Same time dependence as in Fig. 3, but in the case
of the open linear three-spin chain. (a) All eight eigenvalues.
(b) Regularization terms v(t )W̃1 (dashed line) and v(t )W̃2 (dotted
line). (c) Probability amplitudes for the solution "FF(t ) of the
TDSE: |CFF

3 |2 = |CFF
6 |2 (solid line), |CFF

1 |2 = |CFF
8 |2 (dashed line),

and |CFF
2 |2 = |CFF

4 |2 = |CFF
5 |2 = |CFF

7 |2 (dotted line).

solution

W̃ = h̄
∂RC2

2C1
= h̄(C1∂RC2 − C2∂RC1)

=
Bx

∂J
∂R − J ∂Bx

∂R

4
(
B2

x + 2BxJ + 4J2
) . (4.3)

The second equality in (4.3) is due to the normalization
condition and Eq. (4.1). Including the regularization term
followed by rescaling of time, the fast-forward Hamiltonian
is written as

HFF = H0(R(!(t ))) + v(t )H̃(R(!(t ))), (4.4)

with H0 = J (R(!(t )))(σ z
1σ z

2 + σ z
2σ z

3 + σ z
3σ z

1 ) − 1
2 (σ x

1 + σ x
2 +

σ x
3 )Bx(R(!(t ))) and vH̃ = v(t )W̃ (R(!(t )))[(σ y

1 σ z
2 + σ z

1σ
y
2 )

+ (σ y
2 σ z

3 + σ z
2σ

y
3 ) + (σ y

3 σ z
1 + σ z

3σ
y
1 )].

The fast-forward Hamiltonian guarantees the fast forward
of the adiabatic dynamics of the ground-state wave function.
Figures 3(b) and 3(c) show the time dependence of the
regularization term and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
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Then, by taking the time derivative of ! (n)
FF in Eq. (2.9)

and using the equalities ∂t C(n)(R(#(t ))) = αϵ∂RC(n) and
∂tξn(R(#(t ))) = iC(n)†∂t C(n) = iαϵC(n)†∂RC(n), we have

ih̄!̇ (n)
FF = {ih̄αϵ[∂RC(n) − (C(n)†∂RC(n) )C(n)] + EC(n)}

× exp
(

− i
h̄

∫ t

0
En(R(#(t ′)))dt ′

)
eiξn (R(#(t ))).

(2.13)

The first and second terms in curly brackets on the
right-hand side are replaced by αϵH̃nC(n)(R(#(t ))) and
H0C(n)(R(#(t ))), respectively, by using Eqs. (2.8) and (2.1).
Using the definition of ! (n)

FF (t ) and taking the asymptotic
limit ᾱ → ∞ and ϵ → 0 under the constraint that ᾱ · ϵ ≡ v̄
is finite, we obtain

ih̄
∂! (n)

FF

∂t
= [H0(R(#(t ))) + v(t )H̃n(R(#(t )))]! (n)

FF

≡ H (n)
FF ! (n)

FF . (2.14)

Here v(t ) is a velocity function available from α(t ) in the
asymptotic limit

v(t ) = lim
ϵ → 0,
ᾱ → ∞

ϵα(t ) = v̄

(
1 − cos

2π

TFF
t
)

. (2.15)

Consequently, for 0 ! t ! TFF,

R(#(t )) = R0 + lim
ϵ → 0,
ᾱ → ∞

ε#(t ) = R0 +
∫ t

0
v(t ′)dt ′

= R0 + v̄

[
t − TFF

2π
sin

(
2π

TFF
t
)]

. (2.16)

Here H (n)
FF is the fast-forward Hamiltonian and H̃n is the

regularization term obtained from Eq. (2.8) to generate the
fast-forward scheme in spin system. Equations (2.9) and
(2.14) work on a laboratory timescale.

There is a relationship between our formula for H̃n in
Eq. (2.8) and the Demirplak-Rice-Berry formula [4–6] for
the CD term H. If there is an n-independent regularization
term H̃ among {H̃n}, we can define H ≡ v(t )H̃ with the use
of v(t ) = ∂R(#(t ))

∂t . Then Eq. (2.8) gives a solution H which
agrees with the Demirplak-Rice-Berry formula for the CD
term (see the proof in [16]). It should be noted, however,
that the above correspondence works well only in the case
that we can find n-independent regularization terms H̃ among
{H̃n}. Using the above notion, one may call v(t )H̃n a state-
dependent CD term. Hereafter we will be concerned with the
fast forward of adiabatic dynamics of one of the adiabatic
states (i.e., the ground state) and therefore the suffix n in H̃n
will be suppressed.

III. FAST-FORWARD DRIVING INTERACTIONS FOR SPIN
CLUSTERS OF VARIOUS GEOMETRIES

To begin with, let us explain the method of solving the
linear algebraic equation for unknown regularization terms
in Eq. (2.8). Then, in the succeeding sections, we will treat
regular spin clusters of various geometries with N up to 4, i.e.,

FIG. 1. (a) Regular triangle and (b) open linear three-spin chain.
Solid lines stand for the original exchange interactions. Dashed and
dotted lines show the pairwise regularization interactions. Each line
species denotes the geometrically identical regularization interaction.

regular triangle and open linear chains for N = 3 spins (see
Fig. 1) and triangular pyramid, square, primary star graph,
and open linear chains for N = 4 spins (see Fig. 2). Our
scheme is free from obtaining all eigenvectors for a given
adiabatic Hamiltonian. As shown in the core Eq. (2.8), we
need information only about a single eigenstate, typically the
ground state.

As an original (reference) model, we choose the transverse
Ising mode, whose Hamiltonian for N spin systems is written
as

H0 = J (R(t ))
∑

(i, j)∈NN

σ z
i σ z

j − 1
2 Bx(R(t ))

N∑

i=1

σ x
i , (3.1)

where J (R(t )) = R(t ) = R0 + ϵt and Bx(R(t )) = B0 − R(t ),
with ϵ ≪ 1, are the adiabatically changing exchange interac-
tion and transverse magnetic field, respectively, and (i, j) ∈
NN denotes nearest-neighboring pairs. Using the spin config-
uration bases, the dimension of Hilbert space is 2N .

The energy matrix corresponding to the Hamiltonian (3.1)
is real symmetric, which makes the eigenstates real, and the
ground state is expressed by the real components {Ck : k =
1, . . . , 2N }. This, in combination with the fact that the length
of the corresponding eigenvector is constant and equal to 1,
leads to the conclusion that the adiabatic phase ξn in Eq. (2.5)
is zero in all spin clusters in the present work. Further, because
of the geometrical symmetry of spin clusters in Figs. 1 and 2,
some of the components Ck are degenerate, which reduces the
number of independent equations in the core Eq. (2.8).

As for the unknown regularization term H̃ in Eq. (2.8),
we must impose a form which makes its matrix elements
pure imaginary because the right-hand side of Eq. (2.8) is
now pure imaginary. Among several possibilities, we assume
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FIG. 2. (a) Triangular pyramid, (b) square, (c) primary star
graph, and (d) open linear four-spin chain. Solid lines stand for
the original exchange interactions. Dashed, dotted, dot-dashed, and
double-dot–dashed lines show the pairwise regularization interac-
tions. Each line species denotes the geometrically identical regular-
ization interaction.

the regularization term consisting of pairwise interactions de-
scribed by W̃ yz

i j = W̃ yz
i j (ϵt ) and three-body interactions Q̃xyz

i jk =
Q̃xyz

i jk (ϵt ). Other possible contributions such as a single-particle
energy due to the y component of the magnetic field (B̃y),
pairwise interaction W̃ xy

i j , and three-body interaction Q̃xxy
i jk lead

to an incompatible algebraic equation (2.8) and should be
excluded. The candidate for the regularization Hamiltonian H̃
then takes the form

H̃ =
∑

(i, j)∈all

W̃ yz
i j

(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

Q̃xyz
i jk

(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k , (3.2)

where (i, j) ∈ all and (i, j, k) ∈ all represent all possible com-
binations (not permutations) and are not limited to nearest
neighbors. The three-body interaction here is not a result of
the truncation of long-range and multibody counterdiabatic
interactions but is introduced in advance to make the core
equation solvable.

Since regular spin clusters have geometric symmetry, some
of the interactions (W̃ yz

i j ) are degenerate, as shown in Figs. 1
and 2, and the reduced number of independent interactions
should be equal to the number of independent equations in
Eq. (2.8). In the present paper, the three-body interaction will
play a subsidiary role. Below we will solve the regularization
terms and obtain the fast-forward Hamiltonian for spin clus-
ters of various geometries.

IV. REGULAR TRIANGLE AND OPEN LINEAR
THREE-SPIN CHAINS

In this section we investigate a regular triangle and open
linear three-spin chains in Fig. 1. We use the spin config-
uration bases as |1⟩ = |↑ ↑↑⟩, |2⟩ = |↑ ↑↓⟩, |3⟩ = |↑ ↓↑⟩,
|4⟩ = |↓ ↑↑⟩, |5⟩ = |↑ ↓↓⟩, |6⟩ = |↓ ↑↓⟩, |7⟩ = |↓ ↓↑⟩, and
|8⟩ = |↓ ↓↓⟩.

A. Regular triangle

In the case of the regular triangle, the eigenvalue for the
ground state is E0 = −

√
B2

x + 2BxJ + 4J2 − Bx
2 + J . We have

confirmed in Fig. 3(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state are
C1 = V1ζ , C2 = V2ζ , C3 = V3ζ , C4 = V4ζ , C5 = V5ζ , C6 =
V6ζ , C7 = V7ζ , and C8 = V8ζ , where V1 = V8 = 1, V2 = V3 =
V4 = V5 = V6 = V7 = 2

√
B2

x+2BxJ+4J2+Bx+4J
3Bx

, and ζ = 1√
2+6V 2

2

.

Here we see the symmetry C1 = C8 and C2 = C3 = C4 =
C5 = C6 = C7. From the R derivative of the normalization
(
∑8

j=1 C2
j = 2C2

1 + 6C2
2 = 1), we see that

C1
∂C1

∂R
+ 3C2

∂C2

∂R
= 0, (4.1)

and then the adiabatic phase ξ = 0.
As for the regularization Hamiltonian for the regular

triangle, we can proceed without having recourse to the
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FIG. 2. (a) Triangular pyramid, (b) square, (c) primary star
graph, and (d) open linear four-spin chain. Solid lines stand for
the original exchange interactions. Dashed, dotted, dot-dashed, and
double-dot–dashed lines show the pairwise regularization interac-
tions. Each line species denotes the geometrically identical regular-
ization interaction.

the regularization term consisting of pairwise interactions de-
scribed by W̃ yz

i j = W̃ yz
i j (ϵt ) and three-body interactions Q̃xyz

i jk =
Q̃xyz

i jk (ϵt ). Other possible contributions such as a single-particle
energy due to the y component of the magnetic field (B̃y),
pairwise interaction W̃ xy

i j , and three-body interaction Q̃xxy
i jk lead

to an incompatible algebraic equation (2.8) and should be
excluded. The candidate for the regularization Hamiltonian H̃
then takes the form

H̃ =
∑

(i, j)∈all

W̃ yz
i j

(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

Q̃xyz
i jk

(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k , (3.2)

where (i, j) ∈ all and (i, j, k) ∈ all represent all possible com-
binations (not permutations) and are not limited to nearest
neighbors. The three-body interaction here is not a result of
the truncation of long-range and multibody counterdiabatic
interactions but is introduced in advance to make the core
equation solvable.

Since regular spin clusters have geometric symmetry, some
of the interactions (W̃ yz

i j ) are degenerate, as shown in Figs. 1
and 2, and the reduced number of independent interactions
should be equal to the number of independent equations in
Eq. (2.8). In the present paper, the three-body interaction will
play a subsidiary role. Below we will solve the regularization
terms and obtain the fast-forward Hamiltonian for spin clus-
ters of various geometries.

IV. REGULAR TRIANGLE AND OPEN LINEAR
THREE-SPIN CHAINS

In this section we investigate a regular triangle and open
linear three-spin chains in Fig. 1. We use the spin config-
uration bases as |1⟩ = |↑ ↑↑⟩, |2⟩ = |↑ ↑↓⟩, |3⟩ = |↑ ↓↑⟩,
|4⟩ = |↓ ↑↑⟩, |5⟩ = |↑ ↓↓⟩, |6⟩ = |↓ ↑↓⟩, |7⟩ = |↓ ↓↑⟩, and
|8⟩ = |↓ ↓↓⟩.

A. Regular triangle

In the case of the regular triangle, the eigenvalue for the
ground state is E0 = −

√
B2

x + 2BxJ + 4J2 − Bx
2 + J . We have

confirmed in Fig. 3(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state are
C1 = V1ζ , C2 = V2ζ , C3 = V3ζ , C4 = V4ζ , C5 = V5ζ , C6 =
V6ζ , C7 = V7ζ , and C8 = V8ζ , where V1 = V8 = 1, V2 = V3 =
V4 = V5 = V6 = V7 = 2

√
B2

x+2BxJ+4J2+Bx+4J
3Bx

, and ζ = 1√
2+6V 2

2

.

Here we see the symmetry C1 = C8 and C2 = C3 = C4 =
C5 = C6 = C7. From the R derivative of the normalization
(
∑8

j=1 C2
j = 2C2

1 + 6C2
2 = 1), we see that

C1
∂C1

∂R
+ 3C2

∂C2

∂R
= 0, (4.1)

and then the adiabatic phase ξ = 0.
As for the regularization Hamiltonian for the regular

triangle, we can proceed without having recourse to the
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i.e., C1 = C2 = C3 = C4 = C5 = C6 = C7 = C8 = 1
2
√

2
. The

initial state is a linear combination of |↑ ↑↑⟩, |↑ ↑↓⟩, |↑ ↓↑⟩,
|↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, |↓ ↓↑⟩, and |↓ ↓↓⟩ states. As J is
increased from 0 and Bx is decreased, the system rapidly
changes to the final state, a linear combination of reduced
bases |↑ ↑↓⟩, |↑ ↓↑⟩, |↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, and |↓ ↓↑⟩. In
Fig. 3(c) the solution !FF(t ) of the TDSE (2.14) has repro-
duced the time-rescaled ground-state wave function, which
means the perfect fidelity of !FF(t ) during the fast-forward
time range 0 ! t ! TFF.

B. Open linear three-spin chains

In a similar way we can obtain the regularization term
and fast-forward Hamiltonian in the case of open linear
three-spin chains. In this case the eigenvalue for the ground
state is E0 = − 1

6 [Bx + (β + β̄ ) −
√

3i(β − β̄ )], where β =
(18J2Bx − 8B3

x + 6Ji
√

48J4 + 39B2
xJ2 + 24B4

x )1/3. We have
confirmed in Fig. 4(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state
are C1 = C8 = V1ζ , C2 = C4 = C5 = C7 = V2ζ , and C3 =
C6 = V3ζ , where V1 = 3B2

x−8JBx−4BxE0−4E2
0 −8E0J

4JBx
, V2 = − 1

2V1 −
2J+E0

Bx
, V3 = 1, and ζ = 1√

2V 2
1 +4V 2

2 +2
. Here we see the sym-

metry C1 = C8, C2 = C4 = C5 = C7, and C3 = C6. From the
R derivative of the normalization (

∑8
j=1 C2

j = 2C2
1 + 4C2

2 +
2C2

3 = 1), we see that

C1
∂C1

∂R
+ 2C2

∂C2

∂R
+ C3

∂C3

∂R
= 0, (4.5)

and then the adiabatic phase ξ = 0.
The regularization Hamiltonian for the linear three-spin

system can also be available without using the three-body
interaction. Because of the geometric symmetry seen in
Fig. 1(b), H̃ is then characterized by two independent pairwise
interactions W̃1 ≡ W̃ yz

12 = W̃ yz
23 and W̃2 ≡ W̃ yz

31 , where W̃1 and
W̃2 correspond to the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) interactions, respectively. With use of the
spin configuration bases, the matrix form for H̃ in Eq. (3.2)
is given by

H̃ = i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0 0 0 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

2W̃1 0 0 0 W̃1 − W̃2 0 W̃1 − W̃2 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 W̃1 − W̃2 0 W̃1 − W̃2 0 0 0 2W̃1

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 0 0 0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.6)

Due to the symmetry of {Cj}, there are three independent
equations in Eq. (2.8):

−2(W̃1 + W̃2)C2 − 2W̃1C3 = h̄
∂C1

∂R
, (4.7a)

(W̃1 + W̃2)C1 + (−W̃1 + W̃2)C3 = h̄
∂C2

∂R
, (4.7b)

2W̃1C1 + 2(W̃1 − W̃2)C2 = h̄
∂C3

∂R
. (4.7c)

By using Eq. (4.5), Eq. (4.7c), for example, proves trivial.
Then Eqs. (4.7), whose coefficient matrix has the rank 2, gives
the solution

W̃1 = − h̄
2

∂ (C1 − C3)
∂R

(C1 + 2C2 + C3)−1,

W̃2 = − h̄
2

∂ (C1 − 2C2 + C3)
∂R

(C1 + 2C2 + C3)−1. (4.8)

Including the regularization terms followed by rescaling of
time, the fast-forward Hamiltonian is written as

HFF = H0(R(#(t ))) + v(t )H̃(R(#(t ))), (4.9)

with H0 = J (R(#(t )))(σ z
1σ z

2 + σ z
2σ z

3 ) − 1
2 (σ x

1 + σ x
2 + σ x

3 )
Bx(R(#(t ))) and vH̃ = v(t )W̃1(R(#(t )))[(σ y

1 σ z
2 + σ z

1σ
y
2 )

+ (σ y
2 σ z

3 + σ z
2σ

y
3 )] + v(t )W̃2(R(#(t )))(σ y

1 σ z
3 + σ z

1σ
y
3 ). The

fast-forward Hamiltonian guarantees the fast forward of
the adiabatic dynamics of the ground-state wave function.
Figures 4(b) and 4(c) show the time dependence of the
regularization terms and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
i.e., Cj = 1

2
√

2
for j = 1, . . . , 8. As J is increased from 0 and

Bx is decreased, the system rapidly changes to the final state,
i.e., a linear combination of reduced bases. In Fig. 4(c) the
solution !FF(t ) of the TDSE (2.14) has exactly reproduced
the time-rescaled ground-state wave function.

In the case of N = 3 spin systems, we have obtained
the regularization terms and the fast-forward Hamiltonian
without having recourse to the three-body interaction. Of
course, we can see regularization terms which include the
three-body interaction: For a regular triangle we can have an
extra solution consisting of only the three-body interaction
(Q̃), and for the open linear three-spin system there can be
solutions where Q̃ ̸= 0 and one of W̃1 and W̃2 is nonvanishing.
However, these extra solutions are less interesting from the
viewpoint of searching for simpler controls. In the case of
N = 4 spin systems in the next section, however, we cannot
proceed without the three-body interaction, although it will
play only a subsidiary role.
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Then, by taking the time derivative of ! (n)
FF in Eq. (2.9)

and using the equalities ∂t C(n)(R(#(t ))) = αϵ∂RC(n) and
∂tξn(R(#(t ))) = iC(n)†∂t C(n) = iαϵC(n)†∂RC(n), we have

ih̄!̇ (n)
FF = {ih̄αϵ[∂RC(n) − (C(n)†∂RC(n) )C(n)] + EC(n)}

× exp
(

− i
h̄

∫ t

0
En(R(#(t ′)))dt ′

)
eiξn (R(#(t ))).

(2.13)

The first and second terms in curly brackets on the
right-hand side are replaced by αϵH̃nC(n)(R(#(t ))) and
H0C(n)(R(#(t ))), respectively, by using Eqs. (2.8) and (2.1).
Using the definition of ! (n)

FF (t ) and taking the asymptotic
limit ᾱ → ∞ and ϵ → 0 under the constraint that ᾱ · ϵ ≡ v̄
is finite, we obtain

ih̄
∂! (n)

FF

∂t
= [H0(R(#(t ))) + v(t )H̃n(R(#(t )))]! (n)

FF

≡ H (n)
FF ! (n)

FF . (2.14)

Here v(t ) is a velocity function available from α(t ) in the
asymptotic limit

v(t ) = lim
ϵ → 0,
ᾱ → ∞

ϵα(t ) = v̄

(
1 − cos

2π

TFF
t
)

. (2.15)

Consequently, for 0 ! t ! TFF,

R(#(t )) = R0 + lim
ϵ → 0,
ᾱ → ∞

ε#(t ) = R0 +
∫ t

0
v(t ′)dt ′

= R0 + v̄

[
t − TFF

2π
sin

(
2π

TFF
t
)]

. (2.16)

Here H (n)
FF is the fast-forward Hamiltonian and H̃n is the

regularization term obtained from Eq. (2.8) to generate the
fast-forward scheme in spin system. Equations (2.9) and
(2.14) work on a laboratory timescale.

There is a relationship between our formula for H̃n in
Eq. (2.8) and the Demirplak-Rice-Berry formula [4–6] for
the CD term H. If there is an n-independent regularization
term H̃ among {H̃n}, we can define H ≡ v(t )H̃ with the use
of v(t ) = ∂R(#(t ))

∂t . Then Eq. (2.8) gives a solution H which
agrees with the Demirplak-Rice-Berry formula for the CD
term (see the proof in [16]). It should be noted, however,
that the above correspondence works well only in the case
that we can find n-independent regularization terms H̃ among
{H̃n}. Using the above notion, one may call v(t )H̃n a state-
dependent CD term. Hereafter we will be concerned with the
fast forward of adiabatic dynamics of one of the adiabatic
states (i.e., the ground state) and therefore the suffix n in H̃n
will be suppressed.

III. FAST-FORWARD DRIVING INTERACTIONS FOR SPIN
CLUSTERS OF VARIOUS GEOMETRIES

To begin with, let us explain the method of solving the
linear algebraic equation for unknown regularization terms
in Eq. (2.8). Then, in the succeeding sections, we will treat
regular spin clusters of various geometries with N up to 4, i.e.,

FIG. 1. (a) Regular triangle and (b) open linear three-spin chain.
Solid lines stand for the original exchange interactions. Dashed and
dotted lines show the pairwise regularization interactions. Each line
species denotes the geometrically identical regularization interaction.

regular triangle and open linear chains for N = 3 spins (see
Fig. 1) and triangular pyramid, square, primary star graph,
and open linear chains for N = 4 spins (see Fig. 2). Our
scheme is free from obtaining all eigenvectors for a given
adiabatic Hamiltonian. As shown in the core Eq. (2.8), we
need information only about a single eigenstate, typically the
ground state.

As an original (reference) model, we choose the transverse
Ising mode, whose Hamiltonian for N spin systems is written
as

H0 = J (R(t ))
∑

(i, j)∈NN

σ z
i σ z

j − 1
2 Bx(R(t ))

N∑

i=1

σ x
i , (3.1)

where J (R(t )) = R(t ) = R0 + ϵt and Bx(R(t )) = B0 − R(t ),
with ϵ ≪ 1, are the adiabatically changing exchange interac-
tion and transverse magnetic field, respectively, and (i, j) ∈
NN denotes nearest-neighboring pairs. Using the spin config-
uration bases, the dimension of Hilbert space is 2N .

The energy matrix corresponding to the Hamiltonian (3.1)
is real symmetric, which makes the eigenstates real, and the
ground state is expressed by the real components {Ck : k =
1, . . . , 2N }. This, in combination with the fact that the length
of the corresponding eigenvector is constant and equal to 1,
leads to the conclusion that the adiabatic phase ξn in Eq. (2.5)
is zero in all spin clusters in the present work. Further, because
of the geometrical symmetry of spin clusters in Figs. 1 and 2,
some of the components Ck are degenerate, which reduces the
number of independent equations in the core Eq. (2.8).

As for the unknown regularization term H̃ in Eq. (2.8),
we must impose a form which makes its matrix elements
pure imaginary because the right-hand side of Eq. (2.8) is
now pure imaginary. Among several possibilities, we assume

062116-3

FAST-FORWARD APPROACH TO ADIABATIC QUANTUM … PHYSICAL REVIEW A 99, 062116 (2019)

FIG. 3. Time dependence in the case of the regular triangle
in the fast-forward time range where we choose J = R(!(t )) and
Bx = B0 − R(!(t )), with R(!(t )) defined in Eq. (2.16). The other
parameters are B0 = 10, v̄ = 100, TFF = 0.1, and R0 = 0. (a) All
eight eigenvalues. From the bottom, the second and fourth lines are
doubly degenerate. (b) Regularization term v(t )W̃ . (c) Probability
amplitudes for the solution "FF(t ) of the TDSE: |CFF

2 |2 = |CFF
3 |2 =

|CFF
4 |2 = |CFF

5 |2 = |CFF
6 |2 = |CFF

7 |2 (solid line) and |CFF
1 |2 = |CFF

8 |2
(dashed line).

three-body interaction. Three W̃ yz
i j ’s should be identical due to

the triangular symmetry in Fig. 1(a). Therefore, the unknown
pairwise interaction is the only one, W̃ ≡ W̃ yz

i j , independent of
the pairs (i, j).

By using the spin configuration bases as above, the reg-
ularization Hamiltonian (3.2) is characterized by the ma-
trix elements: H̃1 j = −H̃ j1 = −2iW̃ with j = 2, 3, 4, H̃8 j =
−H̃ j8 = −2iW̃ with j = 5, 6, 7, and all other elements equal
to zero. The explicit expression for H̃ will help us solve
Eq. (2.8).

Due to the symmetry of {Cj}, there are only two indepen-
dent equations in Eq. (2.8):

−6W̃C2 = h̄
∂C1

∂R
, 2W̃C1 = h̄

∂C2

∂R
. (4.2)

Noting the normalization-assisted relation in Eq. (4.1), one
of Eqs. (4.2) becomes trivial and Eqs. (4.2) have the

FIG. 4. Same time dependence as in Fig. 3, but in the case
of the open linear three-spin chain. (a) All eight eigenvalues.
(b) Regularization terms v(t )W̃1 (dashed line) and v(t )W̃2 (dotted
line). (c) Probability amplitudes for the solution "FF(t ) of the
TDSE: |CFF

3 |2 = |CFF
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8 |2 (dashed line),

and |CFF
2 |2 = |CFF

4 |2 = |CFF
5 |2 = |CFF

7 |2 (dotted line).

solution

W̃ = h̄
∂RC2

2C1
= h̄(C1∂RC2 − C2∂RC1)

=
Bx

∂J
∂R − J ∂Bx

∂R

4
(
B2

x + 2BxJ + 4J2
) . (4.3)

The second equality in (4.3) is due to the normalization
condition and Eq. (4.1). Including the regularization term
followed by rescaling of time, the fast-forward Hamiltonian
is written as

HFF = H0(R(!(t ))) + v(t )H̃(R(!(t ))), (4.4)

with H0 = J (R(!(t )))(σ z
1σ z

2 + σ z
2σ z

3 + σ z
3σ z

1 ) − 1
2 (σ x

1 + σ x
2 +

σ x
3 )Bx(R(!(t ))) and vH̃ = v(t )W̃ (R(!(t )))[(σ y

1 σ z
2 + σ z

1σ
y
2 )

+ (σ y
2 σ z

3 + σ z
2σ

y
3 ) + (σ y

3 σ z
1 + σ z

3σ
y
1 )].

The fast-forward Hamiltonian guarantees the fast forward
of the adiabatic dynamics of the ground-state wave function.
Figures 3(b) and 3(c) show the time dependence of the
regularization term and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
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FIG. 3. Time dependence in the case of the regular triangle
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i j , independent of
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By using the spin configuration bases as above, the reg-
ularization Hamiltonian (3.2) is characterized by the ma-
trix elements: H̃1 j = −H̃ j1 = −2iW̃ with j = 2, 3, 4, H̃8 j =
−H̃ j8 = −2iW̃ with j = 5, 6, 7, and all other elements equal
to zero. The explicit expression for H̃ will help us solve
Eq. (2.8).

Due to the symmetry of {Cj}, there are only two indepen-
dent equations in Eq. (2.8):

−6W̃C2 = h̄
∂C1
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, 2W̃C1 = h̄
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. (4.2)

Noting the normalization-assisted relation in Eq. (4.1), one
of Eqs. (4.2) becomes trivial and Eqs. (4.2) have the
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The second equality in (4.3) is due to the normalization
condition and Eq. (4.1). Including the regularization term
followed by rescaling of time, the fast-forward Hamiltonian
is written as
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The fast-forward Hamiltonian guarantees the fast forward
of the adiabatic dynamics of the ground-state wave function.
Figures 3(b) and 3(c) show the time dependence of the
regularization term and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
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The second equality in (4.3) is due to the normalization
condition and Eq. (4.1). Including the regularization term
followed by rescaling of time, the fast-forward Hamiltonian
is written as

HFF = H0(R(!(t ))) + v(t )H̃(R(!(t ))), (4.4)

with H0 = J (R(!(t )))(σ z
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The fast-forward Hamiltonian guarantees the fast forward
of the adiabatic dynamics of the ground-state wave function.
Figures 3(b) and 3(c) show the time dependence of the
regularization term and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
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i.e., C1 = C2 = C3 = C4 = C5 = C6 = C7 = C8 = 1
2
√

2
. The

initial state is a linear combination of |↑ ↑↑⟩, |↑ ↑↓⟩, |↑ ↓↑⟩,
|↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, |↓ ↓↑⟩, and |↓ ↓↓⟩ states. As J is
increased from 0 and Bx is decreased, the system rapidly
changes to the final state, a linear combination of reduced
bases |↑ ↑↓⟩, |↑ ↓↑⟩, |↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, and |↓ ↓↑⟩. In
Fig. 3(c) the solution !FF(t ) of the TDSE (2.14) has repro-
duced the time-rescaled ground-state wave function, which
means the perfect fidelity of !FF(t ) during the fast-forward
time range 0 ! t ! TFF.

B. Open linear three-spin chains

In a similar way we can obtain the regularization term
and fast-forward Hamiltonian in the case of open linear
three-spin chains. In this case the eigenvalue for the ground
state is E0 = − 1

6 [Bx + (β + β̄ ) −
√

3i(β − β̄ )], where β =
(18J2Bx − 8B3

x + 6Ji
√

48J4 + 39B2
xJ2 + 24B4

x )1/3. We have
confirmed in Fig. 4(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state
are C1 = C8 = V1ζ , C2 = C4 = C5 = C7 = V2ζ , and C3 =
C6 = V3ζ , where V1 = 3B2

x−8JBx−4BxE0−4E2
0 −8E0J

4JBx
, V2 = − 1

2V1 −
2J+E0

Bx
, V3 = 1, and ζ = 1√

2V 2
1 +4V 2

2 +2
. Here we see the sym-

metry C1 = C8, C2 = C4 = C5 = C7, and C3 = C6. From the
R derivative of the normalization (

∑8
j=1 C2

j = 2C2
1 + 4C2

2 +
2C2

3 = 1), we see that

C1
∂C1

∂R
+ 2C2

∂C2

∂R
+ C3

∂C3

∂R
= 0, (4.5)

and then the adiabatic phase ξ = 0.
The regularization Hamiltonian for the linear three-spin

system can also be available without using the three-body
interaction. Because of the geometric symmetry seen in
Fig. 1(b), H̃ is then characterized by two independent pairwise
interactions W̃1 ≡ W̃ yz

12 = W̃ yz
23 and W̃2 ≡ W̃ yz

31 , where W̃1 and
W̃2 correspond to the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) interactions, respectively. With use of the
spin configuration bases, the matrix form for H̃ in Eq. (3.2)
is given by

H̃ = i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0 0 0 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

2W̃1 0 0 0 W̃1 − W̃2 0 W̃1 − W̃2 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 W̃1 − W̃2 0 W̃1 − W̃2 0 0 0 2W̃1

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 0 0 0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.6)

Due to the symmetry of {Cj}, there are three independent
equations in Eq. (2.8):

−2(W̃1 + W̃2)C2 − 2W̃1C3 = h̄
∂C1

∂R
, (4.7a)

(W̃1 + W̃2)C1 + (−W̃1 + W̃2)C3 = h̄
∂C2

∂R
, (4.7b)

2W̃1C1 + 2(W̃1 − W̃2)C2 = h̄
∂C3

∂R
. (4.7c)

By using Eq. (4.5), Eq. (4.7c), for example, proves trivial.
Then Eqs. (4.7), whose coefficient matrix has the rank 2, gives
the solution

W̃1 = − h̄
2

∂ (C1 − C3)
∂R

(C1 + 2C2 + C3)−1,

W̃2 = − h̄
2

∂ (C1 − 2C2 + C3)
∂R

(C1 + 2C2 + C3)−1. (4.8)

Including the regularization terms followed by rescaling of
time, the fast-forward Hamiltonian is written as

HFF = H0(R(#(t ))) + v(t )H̃(R(#(t ))), (4.9)

with H0 = J (R(#(t )))(σ z
1σ z

2 + σ z
2σ z

3 ) − 1
2 (σ x

1 + σ x
2 + σ x

3 )
Bx(R(#(t ))) and vH̃ = v(t )W̃1(R(#(t )))[(σ y

1 σ z
2 + σ z

1σ
y
2 )

+ (σ y
2 σ z

3 + σ z
2σ

y
3 )] + v(t )W̃2(R(#(t )))(σ y

1 σ z
3 + σ z

1σ
y
3 ). The

fast-forward Hamiltonian guarantees the fast forward of
the adiabatic dynamics of the ground-state wave function.
Figures 4(b) and 4(c) show the time dependence of the
regularization terms and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
i.e., Cj = 1

2
√

2
for j = 1, . . . , 8. As J is increased from 0 and

Bx is decreased, the system rapidly changes to the final state,
i.e., a linear combination of reduced bases. In Fig. 4(c) the
solution !FF(t ) of the TDSE (2.14) has exactly reproduced
the time-rescaled ground-state wave function.

In the case of N = 3 spin systems, we have obtained
the regularization terms and the fast-forward Hamiltonian
without having recourse to the three-body interaction. Of
course, we can see regularization terms which include the
three-body interaction: For a regular triangle we can have an
extra solution consisting of only the three-body interaction
(Q̃), and for the open linear three-spin system there can be
solutions where Q̃ ̸= 0 and one of W̃1 and W̃2 is nonvanishing.
However, these extra solutions are less interesting from the
viewpoint of searching for simpler controls. In the case of
N = 4 spin systems in the next section, however, we cannot
proceed without the three-body interaction, although it will
play only a subsidiary role.
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FIG. 3. Time dependence in the case of the regular triangle
in the fast-forward time range where we choose J = R(!(t )) and
Bx = B0 − R(!(t )), with R(!(t )) defined in Eq. (2.16). The other
parameters are B0 = 10, v̄ = 100, TFF = 0.1, and R0 = 0. (a) All
eight eigenvalues. From the bottom, the second and fourth lines are
doubly degenerate. (b) Regularization term v(t )W̃ . (c) Probability
amplitudes for the solution "FF(t ) of the TDSE: |CFF

2 |2 = |CFF
3 |2 =

|CFF
4 |2 = |CFF

5 |2 = |CFF
6 |2 = |CFF

7 |2 (solid line) and |CFF
1 |2 = |CFF

8 |2
(dashed line).

three-body interaction. Three W̃ yz
i j ’s should be identical due to

the triangular symmetry in Fig. 1(a). Therefore, the unknown
pairwise interaction is the only one, W̃ ≡ W̃ yz

i j , independent of
the pairs (i, j).

By using the spin configuration bases as above, the reg-
ularization Hamiltonian (3.2) is characterized by the ma-
trix elements: H̃1 j = −H̃ j1 = −2iW̃ with j = 2, 3, 4, H̃8 j =
−H̃ j8 = −2iW̃ with j = 5, 6, 7, and all other elements equal
to zero. The explicit expression for H̃ will help us solve
Eq. (2.8).

Due to the symmetry of {Cj}, there are only two indepen-
dent equations in Eq. (2.8):

−6W̃C2 = h̄
∂C1

∂R
, 2W̃C1 = h̄

∂C2

∂R
. (4.2)

Noting the normalization-assisted relation in Eq. (4.1), one
of Eqs. (4.2) becomes trivial and Eqs. (4.2) have the

FIG. 4. Same time dependence as in Fig. 3, but in the case
of the open linear three-spin chain. (a) All eight eigenvalues.
(b) Regularization terms v(t )W̃1 (dashed line) and v(t )W̃2 (dotted
line). (c) Probability amplitudes for the solution "FF(t ) of the
TDSE: |CFF

3 |2 = |CFF
6 |2 (solid line), |CFF

1 |2 = |CFF
8 |2 (dashed line),

and |CFF
2 |2 = |CFF

4 |2 = |CFF
5 |2 = |CFF

7 |2 (dotted line).

solution

W̃ = h̄
∂RC2

2C1
= h̄(C1∂RC2 − C2∂RC1)

=
Bx

∂J
∂R − J ∂Bx

∂R

4
(
B2

x + 2BxJ + 4J2
) . (4.3)

The second equality in (4.3) is due to the normalization
condition and Eq. (4.1). Including the regularization term
followed by rescaling of time, the fast-forward Hamiltonian
is written as

HFF = H0(R(!(t ))) + v(t )H̃(R(!(t ))), (4.4)

with H0 = J (R(!(t )))(σ z
1σ z

2 + σ z
2σ z

3 + σ z
3σ z

1 ) − 1
2 (σ x

1 + σ x
2 +

σ x
3 )Bx(R(!(t ))) and vH̃ = v(t )W̃ (R(!(t )))[(σ y

1 σ z
2 + σ z

1σ
y
2 )

+ (σ y
2 σ z

3 + σ z
2σ

y
3 ) + (σ y

3 σ z
1 + σ z

3σ
y
1 )].

The fast-forward Hamiltonian guarantees the fast forward
of the adiabatic dynamics of the ground-state wave function.
Figures 3(b) and 3(c) show the time dependence of the
regularization term and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
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Then, by taking the time derivative of ! (n)
FF in Eq. (2.9)

and using the equalities ∂t C(n)(R(#(t ))) = αϵ∂RC(n) and
∂tξn(R(#(t ))) = iC(n)†∂t C(n) = iαϵC(n)†∂RC(n), we have

ih̄!̇ (n)
FF = {ih̄αϵ[∂RC(n) − (C(n)†∂RC(n) )C(n)] + EC(n)}

× exp
(

− i
h̄

∫ t

0
En(R(#(t ′)))dt ′

)
eiξn (R(#(t ))).

(2.13)

The first and second terms in curly brackets on the
right-hand side are replaced by αϵH̃nC(n)(R(#(t ))) and
H0C(n)(R(#(t ))), respectively, by using Eqs. (2.8) and (2.1).
Using the definition of ! (n)

FF (t ) and taking the asymptotic
limit ᾱ → ∞ and ϵ → 0 under the constraint that ᾱ · ϵ ≡ v̄
is finite, we obtain

ih̄
∂! (n)

FF

∂t
= [H0(R(#(t ))) + v(t )H̃n(R(#(t )))]! (n)

FF

≡ H (n)
FF ! (n)

FF . (2.14)

Here v(t ) is a velocity function available from α(t ) in the
asymptotic limit

v(t ) = lim
ϵ → 0,
ᾱ → ∞

ϵα(t ) = v̄

(
1 − cos

2π

TFF
t
)

. (2.15)

Consequently, for 0 ! t ! TFF,

R(#(t )) = R0 + lim
ϵ → 0,
ᾱ → ∞

ε#(t ) = R0 +
∫ t

0
v(t ′)dt ′

= R0 + v̄

[
t − TFF

2π
sin

(
2π

TFF
t
)]

. (2.16)

Here H (n)
FF is the fast-forward Hamiltonian and H̃n is the

regularization term obtained from Eq. (2.8) to generate the
fast-forward scheme in spin system. Equations (2.9) and
(2.14) work on a laboratory timescale.

There is a relationship between our formula for H̃n in
Eq. (2.8) and the Demirplak-Rice-Berry formula [4–6] for
the CD term H. If there is an n-independent regularization
term H̃ among {H̃n}, we can define H ≡ v(t )H̃ with the use
of v(t ) = ∂R(#(t ))

∂t . Then Eq. (2.8) gives a solution H which
agrees with the Demirplak-Rice-Berry formula for the CD
term (see the proof in [16]). It should be noted, however,
that the above correspondence works well only in the case
that we can find n-independent regularization terms H̃ among
{H̃n}. Using the above notion, one may call v(t )H̃n a state-
dependent CD term. Hereafter we will be concerned with the
fast forward of adiabatic dynamics of one of the adiabatic
states (i.e., the ground state) and therefore the suffix n in H̃n
will be suppressed.

III. FAST-FORWARD DRIVING INTERACTIONS FOR SPIN
CLUSTERS OF VARIOUS GEOMETRIES

To begin with, let us explain the method of solving the
linear algebraic equation for unknown regularization terms
in Eq. (2.8). Then, in the succeeding sections, we will treat
regular spin clusters of various geometries with N up to 4, i.e.,

FIG. 1. (a) Regular triangle and (b) open linear three-spin chain.
Solid lines stand for the original exchange interactions. Dashed and
dotted lines show the pairwise regularization interactions. Each line
species denotes the geometrically identical regularization interaction.

regular triangle and open linear chains for N = 3 spins (see
Fig. 1) and triangular pyramid, square, primary star graph,
and open linear chains for N = 4 spins (see Fig. 2). Our
scheme is free from obtaining all eigenvectors for a given
adiabatic Hamiltonian. As shown in the core Eq. (2.8), we
need information only about a single eigenstate, typically the
ground state.

As an original (reference) model, we choose the transverse
Ising mode, whose Hamiltonian for N spin systems is written
as

H0 = J (R(t ))
∑

(i, j)∈NN

σ z
i σ z

j − 1
2 Bx(R(t ))

N∑

i=1

σ x
i , (3.1)

where J (R(t )) = R(t ) = R0 + ϵt and Bx(R(t )) = B0 − R(t ),
with ϵ ≪ 1, are the adiabatically changing exchange interac-
tion and transverse magnetic field, respectively, and (i, j) ∈
NN denotes nearest-neighboring pairs. Using the spin config-
uration bases, the dimension of Hilbert space is 2N .

The energy matrix corresponding to the Hamiltonian (3.1)
is real symmetric, which makes the eigenstates real, and the
ground state is expressed by the real components {Ck : k =
1, . . . , 2N }. This, in combination with the fact that the length
of the corresponding eigenvector is constant and equal to 1,
leads to the conclusion that the adiabatic phase ξn in Eq. (2.5)
is zero in all spin clusters in the present work. Further, because
of the geometrical symmetry of spin clusters in Figs. 1 and 2,
some of the components Ck are degenerate, which reduces the
number of independent equations in the core Eq. (2.8).

As for the unknown regularization term H̃ in Eq. (2.8),
we must impose a form which makes its matrix elements
pure imaginary because the right-hand side of Eq. (2.8) is
now pure imaginary. Among several possibilities, we assume
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i.e., C1 = C2 = C3 = C4 = C5 = C6 = C7 = C8 = 1
2
√

2
. The

initial state is a linear combination of |↑ ↑↑⟩, |↑ ↑↓⟩, |↑ ↓↑⟩,
|↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, |↓ ↓↑⟩, and |↓ ↓↓⟩ states. As J is
increased from 0 and Bx is decreased, the system rapidly
changes to the final state, a linear combination of reduced
bases |↑ ↑↓⟩, |↑ ↓↑⟩, |↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, and |↓ ↓↑⟩. In
Fig. 3(c) the solution !FF(t ) of the TDSE (2.14) has repro-
duced the time-rescaled ground-state wave function, which
means the perfect fidelity of !FF(t ) during the fast-forward
time range 0 ! t ! TFF.

B. Open linear three-spin chains

In a similar way we can obtain the regularization term
and fast-forward Hamiltonian in the case of open linear
three-spin chains. In this case the eigenvalue for the ground
state is E0 = − 1

6 [Bx + (β + β̄ ) −
√

3i(β − β̄ )], where β =
(18J2Bx − 8B3

x + 6Ji
√

48J4 + 39B2
xJ2 + 24B4

x )1/3. We have
confirmed in Fig. 4(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state
are C1 = C8 = V1ζ , C2 = C4 = C5 = C7 = V2ζ , and C3 =
C6 = V3ζ , where V1 = 3B2

x−8JBx−4BxE0−4E2
0 −8E0J

4JBx
, V2 = − 1

2V1 −
2J+E0

Bx
, V3 = 1, and ζ = 1√

2V 2
1 +4V 2

2 +2
. Here we see the sym-

metry C1 = C8, C2 = C4 = C5 = C7, and C3 = C6. From the
R derivative of the normalization (

∑8
j=1 C2

j = 2C2
1 + 4C2

2 +
2C2

3 = 1), we see that

C1
∂C1

∂R
+ 2C2

∂C2

∂R
+ C3

∂C3

∂R
= 0, (4.5)

and then the adiabatic phase ξ = 0.
The regularization Hamiltonian for the linear three-spin

system can also be available without using the three-body
interaction. Because of the geometric symmetry seen in
Fig. 1(b), H̃ is then characterized by two independent pairwise
interactions W̃1 ≡ W̃ yz

12 = W̃ yz
23 and W̃2 ≡ W̃ yz

31 , where W̃1 and
W̃2 correspond to the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) interactions, respectively. With use of the
spin configuration bases, the matrix form for H̃ in Eq. (3.2)
is given by

H̃ = i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0 0 0 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

2W̃1 0 0 0 W̃1 − W̃2 0 W̃1 − W̃2 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 W̃1 − W̃2 0 W̃1 − W̃2 0 0 0 2W̃1

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 0 0 0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.6)

Due to the symmetry of {Cj}, there are three independent
equations in Eq. (2.8):

−2(W̃1 + W̃2)C2 − 2W̃1C3 = h̄
∂C1

∂R
, (4.7a)

(W̃1 + W̃2)C1 + (−W̃1 + W̃2)C3 = h̄
∂C2

∂R
, (4.7b)

2W̃1C1 + 2(W̃1 − W̃2)C2 = h̄
∂C3

∂R
. (4.7c)

By using Eq. (4.5), Eq. (4.7c), for example, proves trivial.
Then Eqs. (4.7), whose coefficient matrix has the rank 2, gives
the solution

W̃1 = − h̄
2

∂ (C1 − C3)
∂R

(C1 + 2C2 + C3)−1,

W̃2 = − h̄
2

∂ (C1 − 2C2 + C3)
∂R

(C1 + 2C2 + C3)−1. (4.8)

Including the regularization terms followed by rescaling of
time, the fast-forward Hamiltonian is written as

HFF = H0(R(#(t ))) + v(t )H̃(R(#(t ))), (4.9)

with H0 = J (R(#(t )))(σ z
1σ z

2 + σ z
2σ z

3 ) − 1
2 (σ x

1 + σ x
2 + σ x

3 )
Bx(R(#(t ))) and vH̃ = v(t )W̃1(R(#(t )))[(σ y

1 σ z
2 + σ z

1σ
y
2 )

+ (σ y
2 σ z

3 + σ z
2σ

y
3 )] + v(t )W̃2(R(#(t )))(σ y

1 σ z
3 + σ z

1σ
y
3 ). The

fast-forward Hamiltonian guarantees the fast forward of
the adiabatic dynamics of the ground-state wave function.
Figures 4(b) and 4(c) show the time dependence of the
regularization terms and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
i.e., Cj = 1

2
√

2
for j = 1, . . . , 8. As J is increased from 0 and

Bx is decreased, the system rapidly changes to the final state,
i.e., a linear combination of reduced bases. In Fig. 4(c) the
solution !FF(t ) of the TDSE (2.14) has exactly reproduced
the time-rescaled ground-state wave function.

In the case of N = 3 spin systems, we have obtained
the regularization terms and the fast-forward Hamiltonian
without having recourse to the three-body interaction. Of
course, we can see regularization terms which include the
three-body interaction: For a regular triangle we can have an
extra solution consisting of only the three-body interaction
(Q̃), and for the open linear three-spin system there can be
solutions where Q̃ ̸= 0 and one of W̃1 and W̃2 is nonvanishing.
However, these extra solutions are less interesting from the
viewpoint of searching for simpler controls. In the case of
N = 4 spin systems in the next section, however, we cannot
proceed without the three-body interaction, although it will
play only a subsidiary role.
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i.e., C1 = C2 = C3 = C4 = C5 = C6 = C7 = C8 = 1
2
√

2
. The

initial state is a linear combination of |↑ ↑↑⟩, |↑ ↑↓⟩, |↑ ↓↑⟩,
|↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, |↓ ↓↑⟩, and |↓ ↓↓⟩ states. As J is
increased from 0 and Bx is decreased, the system rapidly
changes to the final state, a linear combination of reduced
bases |↑ ↑↓⟩, |↑ ↓↑⟩, |↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, and |↓ ↓↑⟩. In
Fig. 3(c) the solution !FF(t ) of the TDSE (2.14) has repro-
duced the time-rescaled ground-state wave function, which
means the perfect fidelity of !FF(t ) during the fast-forward
time range 0 ! t ! TFF.

B. Open linear three-spin chains

In a similar way we can obtain the regularization term
and fast-forward Hamiltonian in the case of open linear
three-spin chains. In this case the eigenvalue for the ground
state is E0 = − 1

6 [Bx + (β + β̄ ) −
√

3i(β − β̄ )], where β =
(18J2Bx − 8B3

x + 6Ji
√

48J4 + 39B2
xJ2 + 24B4

x )1/3. We have
confirmed in Fig. 4(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state
are C1 = C8 = V1ζ , C2 = C4 = C5 = C7 = V2ζ , and C3 =
C6 = V3ζ , where V1 = 3B2

x−8JBx−4BxE0−4E2
0 −8E0J

4JBx
, V2 = − 1

2V1 −
2J+E0

Bx
, V3 = 1, and ζ = 1√

2V 2
1 +4V 2

2 +2
. Here we see the sym-

metry C1 = C8, C2 = C4 = C5 = C7, and C3 = C6. From the
R derivative of the normalization (

∑8
j=1 C2

j = 2C2
1 + 4C2

2 +
2C2

3 = 1), we see that

C1
∂C1

∂R
+ 2C2

∂C2

∂R
+ C3

∂C3

∂R
= 0, (4.5)

and then the adiabatic phase ξ = 0.
The regularization Hamiltonian for the linear three-spin

system can also be available without using the three-body
interaction. Because of the geometric symmetry seen in
Fig. 1(b), H̃ is then characterized by two independent pairwise
interactions W̃1 ≡ W̃ yz

12 = W̃ yz
23 and W̃2 ≡ W̃ yz

31 , where W̃1 and
W̃2 correspond to the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) interactions, respectively. With use of the
spin configuration bases, the matrix form for H̃ in Eq. (3.2)
is given by

H̃ = i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0 0 0 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

2W̃1 0 0 0 W̃1 − W̃2 0 W̃1 − W̃2 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 W̃1 − W̃2 0 W̃1 − W̃2 0 0 0 2W̃1

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 0 0 0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.6)

Due to the symmetry of {Cj}, there are three independent
equations in Eq. (2.8):

−2(W̃1 + W̃2)C2 − 2W̃1C3 = h̄
∂C1

∂R
, (4.7a)

(W̃1 + W̃2)C1 + (−W̃1 + W̃2)C3 = h̄
∂C2

∂R
, (4.7b)

2W̃1C1 + 2(W̃1 − W̃2)C2 = h̄
∂C3

∂R
. (4.7c)

By using Eq. (4.5), Eq. (4.7c), for example, proves trivial.
Then Eqs. (4.7), whose coefficient matrix has the rank 2, gives
the solution

W̃1 = − h̄
2

∂ (C1 − C3)
∂R

(C1 + 2C2 + C3)−1,

W̃2 = − h̄
2

∂ (C1 − 2C2 + C3)
∂R

(C1 + 2C2 + C3)−1. (4.8)

Including the regularization terms followed by rescaling of
time, the fast-forward Hamiltonian is written as

HFF = H0(R(#(t ))) + v(t )H̃(R(#(t ))), (4.9)

with H0 = J (R(#(t )))(σ z
1σ z

2 + σ z
2σ z

3 ) − 1
2 (σ x

1 + σ x
2 + σ x

3 )
Bx(R(#(t ))) and vH̃ = v(t )W̃1(R(#(t )))[(σ y

1 σ z
2 + σ z

1σ
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2 )

+ (σ y
2 σ z

3 + σ z
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3 )] + v(t )W̃2(R(#(t )))(σ y

1 σ z
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3 ). The

fast-forward Hamiltonian guarantees the fast forward of
the adiabatic dynamics of the ground-state wave function.
Figures 4(b) and 4(c) show the time dependence of the
regularization terms and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
i.e., Cj = 1

2
√

2
for j = 1, . . . , 8. As J is increased from 0 and

Bx is decreased, the system rapidly changes to the final state,
i.e., a linear combination of reduced bases. In Fig. 4(c) the
solution !FF(t ) of the TDSE (2.14) has exactly reproduced
the time-rescaled ground-state wave function.

In the case of N = 3 spin systems, we have obtained
the regularization terms and the fast-forward Hamiltonian
without having recourse to the three-body interaction. Of
course, we can see regularization terms which include the
three-body interaction: For a regular triangle we can have an
extra solution consisting of only the three-body interaction
(Q̃), and for the open linear three-spin system there can be
solutions where Q̃ ̸= 0 and one of W̃1 and W̃2 is nonvanishing.
However, these extra solutions are less interesting from the
viewpoint of searching for simpler controls. In the case of
N = 4 spin systems in the next section, however, we cannot
proceed without the three-body interaction, although it will
play only a subsidiary role.
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i.e., C1 = C2 = C3 = C4 = C5 = C6 = C7 = C8 = 1
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. The

initial state is a linear combination of |↑ ↑↑⟩, |↑ ↑↓⟩, |↑ ↓↑⟩,
|↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, |↓ ↓↑⟩, and |↓ ↓↓⟩ states. As J is
increased from 0 and Bx is decreased, the system rapidly
changes to the final state, a linear combination of reduced
bases |↑ ↑↓⟩, |↑ ↓↑⟩, |↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, and |↓ ↓↑⟩. In
Fig. 3(c) the solution !FF(t ) of the TDSE (2.14) has repro-
duced the time-rescaled ground-state wave function, which
means the perfect fidelity of !FF(t ) during the fast-forward
time range 0 ! t ! TFF.

B. Open linear three-spin chains

In a similar way we can obtain the regularization term
and fast-forward Hamiltonian in the case of open linear
three-spin chains. In this case the eigenvalue for the ground
state is E0 = − 1

6 [Bx + (β + β̄ ) −
√

3i(β − β̄ )], where β =
(18J2Bx − 8B3

x + 6Ji
√

48J4 + 39B2
xJ2 + 24B4

x )1/3. We have
confirmed in Fig. 4(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state
are C1 = C8 = V1ζ , C2 = C4 = C5 = C7 = V2ζ , and C3 =
C6 = V3ζ , where V1 = 3B2

x−8JBx−4BxE0−4E2
0 −8E0J

4JBx
, V2 = − 1

2V1 −
2J+E0
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, V3 = 1, and ζ = 1√

2V 2
1 +4V 2

2 +2
. Here we see the sym-

metry C1 = C8, C2 = C4 = C5 = C7, and C3 = C6. From the
R derivative of the normalization (

∑8
j=1 C2

j = 2C2
1 + 4C2

2 +
2C2

3 = 1), we see that

C1
∂C1

∂R
+ 2C2

∂C2

∂R
+ C3

∂C3

∂R
= 0, (4.5)

and then the adiabatic phase ξ = 0.
The regularization Hamiltonian for the linear three-spin

system can also be available without using the three-body
interaction. Because of the geometric symmetry seen in
Fig. 1(b), H̃ is then characterized by two independent pairwise
interactions W̃1 ≡ W̃ yz

12 = W̃ yz
23 and W̃2 ≡ W̃ yz

31 , where W̃1 and
W̃2 correspond to the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) interactions, respectively. With use of the
spin configuration bases, the matrix form for H̃ in Eq. (3.2)
is given by

H̃ = i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0 0 0 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

2W̃1 0 0 0 W̃1 − W̃2 0 W̃1 − W̃2 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 W̃1 − W̃2 0 W̃1 − W̃2 0 0 0 2W̃1

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 0 0 0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.6)

Due to the symmetry of {Cj}, there are three independent
equations in Eq. (2.8):

−2(W̃1 + W̃2)C2 − 2W̃1C3 = h̄
∂C1

∂R
, (4.7a)

(W̃1 + W̃2)C1 + (−W̃1 + W̃2)C3 = h̄
∂C2

∂R
, (4.7b)

2W̃1C1 + 2(W̃1 − W̃2)C2 = h̄
∂C3

∂R
. (4.7c)

By using Eq. (4.5), Eq. (4.7c), for example, proves trivial.
Then Eqs. (4.7), whose coefficient matrix has the rank 2, gives
the solution

W̃1 = − h̄
2

∂ (C1 − C3)
∂R

(C1 + 2C2 + C3)−1,

W̃2 = − h̄
2

∂ (C1 − 2C2 + C3)
∂R

(C1 + 2C2 + C3)−1. (4.8)

Including the regularization terms followed by rescaling of
time, the fast-forward Hamiltonian is written as

HFF = H0(R(#(t ))) + v(t )H̃(R(#(t ))), (4.9)

with H0 = J (R(#(t )))(σ z
1σ z

2 + σ z
2σ z

3 ) − 1
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Bx(R(#(t ))) and vH̃ = v(t )W̃1(R(#(t )))[(σ y
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3 + σ z
2σ

y
3 )] + v(t )W̃2(R(#(t )))(σ y

1 σ z
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3 ). The

fast-forward Hamiltonian guarantees the fast forward of
the adiabatic dynamics of the ground-state wave function.
Figures 4(b) and 4(c) show the time dependence of the
regularization terms and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
i.e., Cj = 1

2
√

2
for j = 1, . . . , 8. As J is increased from 0 and

Bx is decreased, the system rapidly changes to the final state,
i.e., a linear combination of reduced bases. In Fig. 4(c) the
solution !FF(t ) of the TDSE (2.14) has exactly reproduced
the time-rescaled ground-state wave function.

In the case of N = 3 spin systems, we have obtained
the regularization terms and the fast-forward Hamiltonian
without having recourse to the three-body interaction. Of
course, we can see regularization terms which include the
three-body interaction: For a regular triangle we can have an
extra solution consisting of only the three-body interaction
(Q̃), and for the open linear three-spin system there can be
solutions where Q̃ ̸= 0 and one of W̃1 and W̃2 is nonvanishing.
However, these extra solutions are less interesting from the
viewpoint of searching for simpler controls. In the case of
N = 4 spin systems in the next section, however, we cannot
proceed without the three-body interaction, although it will
play only a subsidiary role.
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Then, by taking the time derivative of ! (n)
FF in Eq. (2.9)

and using the equalities ∂t C(n)(R(#(t ))) = αϵ∂RC(n) and
∂tξn(R(#(t ))) = iC(n)†∂t C(n) = iαϵC(n)†∂RC(n), we have

ih̄!̇ (n)
FF = {ih̄αϵ[∂RC(n) − (C(n)†∂RC(n) )C(n)] + EC(n)}

× exp
(

− i
h̄

∫ t

0
En(R(#(t ′)))dt ′

)
eiξn (R(#(t ))).

(2.13)

The first and second terms in curly brackets on the
right-hand side are replaced by αϵH̃nC(n)(R(#(t ))) and
H0C(n)(R(#(t ))), respectively, by using Eqs. (2.8) and (2.1).
Using the definition of ! (n)

FF (t ) and taking the asymptotic
limit ᾱ → ∞ and ϵ → 0 under the constraint that ᾱ · ϵ ≡ v̄
is finite, we obtain

ih̄
∂! (n)

FF

∂t
= [H0(R(#(t ))) + v(t )H̃n(R(#(t )))]! (n)

FF

≡ H (n)
FF ! (n)

FF . (2.14)

Here v(t ) is a velocity function available from α(t ) in the
asymptotic limit

v(t ) = lim
ϵ → 0,
ᾱ → ∞

ϵα(t ) = v̄

(
1 − cos

2π

TFF
t
)

. (2.15)

Consequently, for 0 ! t ! TFF,

R(#(t )) = R0 + lim
ϵ → 0,
ᾱ → ∞

ε#(t ) = R0 +
∫ t

0
v(t ′)dt ′

= R0 + v̄

[
t − TFF

2π
sin

(
2π

TFF
t
)]

. (2.16)

Here H (n)
FF is the fast-forward Hamiltonian and H̃n is the

regularization term obtained from Eq. (2.8) to generate the
fast-forward scheme in spin system. Equations (2.9) and
(2.14) work on a laboratory timescale.

There is a relationship between our formula for H̃n in
Eq. (2.8) and the Demirplak-Rice-Berry formula [4–6] for
the CD term H. If there is an n-independent regularization
term H̃ among {H̃n}, we can define H ≡ v(t )H̃ with the use
of v(t ) = ∂R(#(t ))

∂t . Then Eq. (2.8) gives a solution H which
agrees with the Demirplak-Rice-Berry formula for the CD
term (see the proof in [16]). It should be noted, however,
that the above correspondence works well only in the case
that we can find n-independent regularization terms H̃ among
{H̃n}. Using the above notion, one may call v(t )H̃n a state-
dependent CD term. Hereafter we will be concerned with the
fast forward of adiabatic dynamics of one of the adiabatic
states (i.e., the ground state) and therefore the suffix n in H̃n
will be suppressed.

III. FAST-FORWARD DRIVING INTERACTIONS FOR SPIN
CLUSTERS OF VARIOUS GEOMETRIES

To begin with, let us explain the method of solving the
linear algebraic equation for unknown regularization terms
in Eq. (2.8). Then, in the succeeding sections, we will treat
regular spin clusters of various geometries with N up to 4, i.e.,

FIG. 1. (a) Regular triangle and (b) open linear three-spin chain.
Solid lines stand for the original exchange interactions. Dashed and
dotted lines show the pairwise regularization interactions. Each line
species denotes the geometrically identical regularization interaction.

regular triangle and open linear chains for N = 3 spins (see
Fig. 1) and triangular pyramid, square, primary star graph,
and open linear chains for N = 4 spins (see Fig. 2). Our
scheme is free from obtaining all eigenvectors for a given
adiabatic Hamiltonian. As shown in the core Eq. (2.8), we
need information only about a single eigenstate, typically the
ground state.

As an original (reference) model, we choose the transverse
Ising mode, whose Hamiltonian for N spin systems is written
as

H0 = J (R(t ))
∑

(i, j)∈NN

σ z
i σ z

j − 1
2 Bx(R(t ))

N∑

i=1

σ x
i , (3.1)

where J (R(t )) = R(t ) = R0 + ϵt and Bx(R(t )) = B0 − R(t ),
with ϵ ≪ 1, are the adiabatically changing exchange interac-
tion and transverse magnetic field, respectively, and (i, j) ∈
NN denotes nearest-neighboring pairs. Using the spin config-
uration bases, the dimension of Hilbert space is 2N .

The energy matrix corresponding to the Hamiltonian (3.1)
is real symmetric, which makes the eigenstates real, and the
ground state is expressed by the real components {Ck : k =
1, . . . , 2N }. This, in combination with the fact that the length
of the corresponding eigenvector is constant and equal to 1,
leads to the conclusion that the adiabatic phase ξn in Eq. (2.5)
is zero in all spin clusters in the present work. Further, because
of the geometrical symmetry of spin clusters in Figs. 1 and 2,
some of the components Ck are degenerate, which reduces the
number of independent equations in the core Eq. (2.8).

As for the unknown regularization term H̃ in Eq. (2.8),
we must impose a form which makes its matrix elements
pure imaginary because the right-hand side of Eq. (2.8) is
now pure imaginary. Among several possibilities, we assume
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i.e., C1 = C2 = C3 = C4 = C5 = C6 = C7 = C8 = 1
2
√

2
. The

initial state is a linear combination of |↑ ↑↑⟩, |↑ ↑↓⟩, |↑ ↓↑⟩,
|↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, |↓ ↓↑⟩, and |↓ ↓↓⟩ states. As J is
increased from 0 and Bx is decreased, the system rapidly
changes to the final state, a linear combination of reduced
bases |↑ ↑↓⟩, |↑ ↓↑⟩, |↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, and |↓ ↓↑⟩. In
Fig. 3(c) the solution !FF(t ) of the TDSE (2.14) has repro-
duced the time-rescaled ground-state wave function, which
means the perfect fidelity of !FF(t ) during the fast-forward
time range 0 ! t ! TFF.

B. Open linear three-spin chains

In a similar way we can obtain the regularization term
and fast-forward Hamiltonian in the case of open linear
three-spin chains. In this case the eigenvalue for the ground
state is E0 = − 1

6 [Bx + (β + β̄ ) −
√

3i(β − β̄ )], where β =
(18J2Bx − 8B3

x + 6Ji
√

48J4 + 39B2
xJ2 + 24B4

x )1/3. We have
confirmed in Fig. 4(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state
are C1 = C8 = V1ζ , C2 = C4 = C5 = C7 = V2ζ , and C3 =
C6 = V3ζ , where V1 = 3B2

x−8JBx−4BxE0−4E2
0 −8E0J

4JBx
, V2 = − 1

2V1 −
2J+E0

Bx
, V3 = 1, and ζ = 1√

2V 2
1 +4V 2

2 +2
. Here we see the sym-

metry C1 = C8, C2 = C4 = C5 = C7, and C3 = C6. From the
R derivative of the normalization (

∑8
j=1 C2

j = 2C2
1 + 4C2

2 +
2C2

3 = 1), we see that

C1
∂C1

∂R
+ 2C2

∂C2

∂R
+ C3

∂C3

∂R
= 0, (4.5)

and then the adiabatic phase ξ = 0.
The regularization Hamiltonian for the linear three-spin

system can also be available without using the three-body
interaction. Because of the geometric symmetry seen in
Fig. 1(b), H̃ is then characterized by two independent pairwise
interactions W̃1 ≡ W̃ yz

12 = W̃ yz
23 and W̃2 ≡ W̃ yz

31 , where W̃1 and
W̃2 correspond to the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) interactions, respectively. With use of the
spin configuration bases, the matrix form for H̃ in Eq. (3.2)
is given by

H̃ = i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0 0 0 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

2W̃1 0 0 0 W̃1 − W̃2 0 W̃1 − W̃2 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 W̃1 − W̃2 0 W̃1 − W̃2 0 0 0 2W̃1

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 0 0 0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.6)

Due to the symmetry of {Cj}, there are three independent
equations in Eq. (2.8):

−2(W̃1 + W̃2)C2 − 2W̃1C3 = h̄
∂C1

∂R
, (4.7a)

(W̃1 + W̃2)C1 + (−W̃1 + W̃2)C3 = h̄
∂C2

∂R
, (4.7b)

2W̃1C1 + 2(W̃1 − W̃2)C2 = h̄
∂C3

∂R
. (4.7c)

By using Eq. (4.5), Eq. (4.7c), for example, proves trivial.
Then Eqs. (4.7), whose coefficient matrix has the rank 2, gives
the solution

W̃1 = − h̄
2

∂ (C1 − C3)
∂R

(C1 + 2C2 + C3)−1,

W̃2 = − h̄
2

∂ (C1 − 2C2 + C3)
∂R

(C1 + 2C2 + C3)−1. (4.8)

Including the regularization terms followed by rescaling of
time, the fast-forward Hamiltonian is written as

HFF = H0(R(#(t ))) + v(t )H̃(R(#(t ))), (4.9)

with H0 = J (R(#(t )))(σ z
1σ z

2 + σ z
2σ z

3 ) − 1
2 (σ x

1 + σ x
2 + σ x

3 )
Bx(R(#(t ))) and vH̃ = v(t )W̃1(R(#(t )))[(σ y

1 σ z
2 + σ z

1σ
y
2 )

+ (σ y
2 σ z

3 + σ z
2σ

y
3 )] + v(t )W̃2(R(#(t )))(σ y

1 σ z
3 + σ z

1σ
y
3 ). The

fast-forward Hamiltonian guarantees the fast forward of
the adiabatic dynamics of the ground-state wave function.
Figures 4(b) and 4(c) show the time dependence of the
regularization terms and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
i.e., Cj = 1

2
√

2
for j = 1, . . . , 8. As J is increased from 0 and

Bx is decreased, the system rapidly changes to the final state,
i.e., a linear combination of reduced bases. In Fig. 4(c) the
solution !FF(t ) of the TDSE (2.14) has exactly reproduced
the time-rescaled ground-state wave function.

In the case of N = 3 spin systems, we have obtained
the regularization terms and the fast-forward Hamiltonian
without having recourse to the three-body interaction. Of
course, we can see regularization terms which include the
three-body interaction: For a regular triangle we can have an
extra solution consisting of only the three-body interaction
(Q̃), and for the open linear three-spin system there can be
solutions where Q̃ ̸= 0 and one of W̃1 and W̃2 is nonvanishing.
However, these extra solutions are less interesting from the
viewpoint of searching for simpler controls. In the case of
N = 4 spin systems in the next section, however, we cannot
proceed without the three-body interaction, although it will
play only a subsidiary role.
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i.e., C1 = C2 = C3 = C4 = C5 = C6 = C7 = C8 = 1
2
√

2
. The

initial state is a linear combination of |↑ ↑↑⟩, |↑ ↑↓⟩, |↑ ↓↑⟩,
|↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, |↓ ↓↑⟩, and |↓ ↓↓⟩ states. As J is
increased from 0 and Bx is decreased, the system rapidly
changes to the final state, a linear combination of reduced
bases |↑ ↑↓⟩, |↑ ↓↑⟩, |↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, and |↓ ↓↑⟩. In
Fig. 3(c) the solution !FF(t ) of the TDSE (2.14) has repro-
duced the time-rescaled ground-state wave function, which
means the perfect fidelity of !FF(t ) during the fast-forward
time range 0 ! t ! TFF.

B. Open linear three-spin chains

In a similar way we can obtain the regularization term
and fast-forward Hamiltonian in the case of open linear
three-spin chains. In this case the eigenvalue for the ground
state is E0 = − 1

6 [Bx + (β + β̄ ) −
√

3i(β − β̄ )], where β =
(18J2Bx − 8B3

x + 6Ji
√

48J4 + 39B2
xJ2 + 24B4

x )1/3. We have
confirmed in Fig. 4(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state
are C1 = C8 = V1ζ , C2 = C4 = C5 = C7 = V2ζ , and C3 =
C6 = V3ζ , where V1 = 3B2

x−8JBx−4BxE0−4E2
0 −8E0J

4JBx
, V2 = − 1

2V1 −
2J+E0

Bx
, V3 = 1, and ζ = 1√

2V 2
1 +4V 2

2 +2
. Here we see the sym-

metry C1 = C8, C2 = C4 = C5 = C7, and C3 = C6. From the
R derivative of the normalization (

∑8
j=1 C2

j = 2C2
1 + 4C2

2 +
2C2

3 = 1), we see that

C1
∂C1

∂R
+ 2C2

∂C2

∂R
+ C3

∂C3

∂R
= 0, (4.5)

and then the adiabatic phase ξ = 0.
The regularization Hamiltonian for the linear three-spin

system can also be available without using the three-body
interaction. Because of the geometric symmetry seen in
Fig. 1(b), H̃ is then characterized by two independent pairwise
interactions W̃1 ≡ W̃ yz

12 = W̃ yz
23 and W̃2 ≡ W̃ yz

31 , where W̃1 and
W̃2 correspond to the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) interactions, respectively. With use of the
spin configuration bases, the matrix form for H̃ in Eq. (3.2)
is given by

H̃ = i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0 0 0 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

2W̃1 0 0 0 W̃1 − W̃2 0 W̃1 − W̃2 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 W̃1 − W̃2 0 W̃1 − W̃2 0 0 0 2W̃1

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 0 0 0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.6)

Due to the symmetry of {Cj}, there are three independent
equations in Eq. (2.8):

−2(W̃1 + W̃2)C2 − 2W̃1C3 = h̄
∂C1

∂R
, (4.7a)

(W̃1 + W̃2)C1 + (−W̃1 + W̃2)C3 = h̄
∂C2

∂R
, (4.7b)

2W̃1C1 + 2(W̃1 − W̃2)C2 = h̄
∂C3

∂R
. (4.7c)

By using Eq. (4.5), Eq. (4.7c), for example, proves trivial.
Then Eqs. (4.7), whose coefficient matrix has the rank 2, gives
the solution

W̃1 = − h̄
2

∂ (C1 − C3)
∂R

(C1 + 2C2 + C3)−1,

W̃2 = − h̄
2

∂ (C1 − 2C2 + C3)
∂R

(C1 + 2C2 + C3)−1. (4.8)

Including the regularization terms followed by rescaling of
time, the fast-forward Hamiltonian is written as

HFF = H0(R(#(t ))) + v(t )H̃(R(#(t ))), (4.9)

with H0 = J (R(#(t )))(σ z
1σ z

2 + σ z
2σ z

3 ) − 1
2 (σ x

1 + σ x
2 + σ x

3 )
Bx(R(#(t ))) and vH̃ = v(t )W̃1(R(#(t )))[(σ y

1 σ z
2 + σ z

1σ
y
2 )

+ (σ y
2 σ z

3 + σ z
2σ

y
3 )] + v(t )W̃2(R(#(t )))(σ y

1 σ z
3 + σ z

1σ
y
3 ). The

fast-forward Hamiltonian guarantees the fast forward of
the adiabatic dynamics of the ground-state wave function.
Figures 4(b) and 4(c) show the time dependence of the
regularization terms and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
i.e., Cj = 1

2
√

2
for j = 1, . . . , 8. As J is increased from 0 and

Bx is decreased, the system rapidly changes to the final state,
i.e., a linear combination of reduced bases. In Fig. 4(c) the
solution !FF(t ) of the TDSE (2.14) has exactly reproduced
the time-rescaled ground-state wave function.

In the case of N = 3 spin systems, we have obtained
the regularization terms and the fast-forward Hamiltonian
without having recourse to the three-body interaction. Of
course, we can see regularization terms which include the
three-body interaction: For a regular triangle we can have an
extra solution consisting of only the three-body interaction
(Q̃), and for the open linear three-spin system there can be
solutions where Q̃ ̸= 0 and one of W̃1 and W̃2 is nonvanishing.
However, these extra solutions are less interesting from the
viewpoint of searching for simpler controls. In the case of
N = 4 spin systems in the next section, however, we cannot
proceed without the three-body interaction, although it will
play only a subsidiary role.
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i.e., C1 = C2 = C3 = C4 = C5 = C6 = C7 = C8 = 1
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√

2
. The

initial state is a linear combination of |↑ ↑↑⟩, |↑ ↑↓⟩, |↑ ↓↑⟩,
|↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, |↓ ↓↑⟩, and |↓ ↓↓⟩ states. As J is
increased from 0 and Bx is decreased, the system rapidly
changes to the final state, a linear combination of reduced
bases |↑ ↑↓⟩, |↑ ↓↑⟩, |↓ ↑↑⟩, |↑ ↓↓⟩, |↓ ↑↓⟩, and |↓ ↓↑⟩. In
Fig. 3(c) the solution !FF(t ) of the TDSE (2.14) has repro-
duced the time-rescaled ground-state wave function, which
means the perfect fidelity of !FF(t ) during the fast-forward
time range 0 ! t ! TFF.

B. Open linear three-spin chains

In a similar way we can obtain the regularization term
and fast-forward Hamiltonian in the case of open linear
three-spin chains. In this case the eigenvalue for the ground
state is E0 = − 1

6 [Bx + (β + β̄ ) −
√

3i(β − β̄ )], where β =
(18J2Bx − 8B3

x + 6Ji
√

48J4 + 39B2
xJ2 + 24B4

x )1/3. We have
confirmed in Fig. 4(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state
are C1 = C8 = V1ζ , C2 = C4 = C5 = C7 = V2ζ , and C3 =
C6 = V3ζ , where V1 = 3B2

x−8JBx−4BxE0−4E2
0 −8E0J

4JBx
, V2 = − 1

2V1 −
2J+E0

Bx
, V3 = 1, and ζ = 1√

2V 2
1 +4V 2

2 +2
. Here we see the sym-

metry C1 = C8, C2 = C4 = C5 = C7, and C3 = C6. From the
R derivative of the normalization (

∑8
j=1 C2

j = 2C2
1 + 4C2

2 +
2C2

3 = 1), we see that

C1
∂C1

∂R
+ 2C2

∂C2

∂R
+ C3

∂C3

∂R
= 0, (4.5)

and then the adiabatic phase ξ = 0.
The regularization Hamiltonian for the linear three-spin

system can also be available without using the three-body
interaction. Because of the geometric symmetry seen in
Fig. 1(b), H̃ is then characterized by two independent pairwise
interactions W̃1 ≡ W̃ yz

12 = W̃ yz
23 and W̃2 ≡ W̃ yz

31 , where W̃1 and
W̃2 correspond to the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) interactions, respectively. With use of the
spin configuration bases, the matrix form for H̃ in Eq. (3.2)
is given by

H̃ = i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0 0 0 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

2W̃1 0 0 0 W̃1 − W̃2 0 W̃1 − W̃2 0
W̃1 + W̃2 0 0 0 0 −W̃1 + W̃2 0 0

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 W̃1 − W̃2 0 W̃1 − W̃2 0 0 0 2W̃1

0 0 −W̃1 + W̃2 0 0 0 0 W̃1 + W̃2

0 0 0 0 −W̃1 − W̃2 −2W̃1 −W̃1 − W̃2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.6)

Due to the symmetry of {Cj}, there are three independent
equations in Eq. (2.8):

−2(W̃1 + W̃2)C2 − 2W̃1C3 = h̄
∂C1

∂R
, (4.7a)

(W̃1 + W̃2)C1 + (−W̃1 + W̃2)C3 = h̄
∂C2

∂R
, (4.7b)

2W̃1C1 + 2(W̃1 − W̃2)C2 = h̄
∂C3

∂R
. (4.7c)

By using Eq. (4.5), Eq. (4.7c), for example, proves trivial.
Then Eqs. (4.7), whose coefficient matrix has the rank 2, gives
the solution

W̃1 = − h̄
2

∂ (C1 − C3)
∂R

(C1 + 2C2 + C3)−1,

W̃2 = − h̄
2

∂ (C1 − 2C2 + C3)
∂R

(C1 + 2C2 + C3)−1. (4.8)

Including the regularization terms followed by rescaling of
time, the fast-forward Hamiltonian is written as

HFF = H0(R(#(t ))) + v(t )H̃(R(#(t ))), (4.9)

with H0 = J (R(#(t )))(σ z
1σ z

2 + σ z
2σ z

3 ) − 1
2 (σ x

1 + σ x
2 + σ x

3 )
Bx(R(#(t ))) and vH̃ = v(t )W̃1(R(#(t )))[(σ y

1 σ z
2 + σ z

1σ
y
2 )

+ (σ y
2 σ z

3 + σ z
2σ

y
3 )] + v(t )W̃2(R(#(t )))(σ y

1 σ z
3 + σ z

1σ
y
3 ). The

fast-forward Hamiltonian guarantees the fast forward of
the adiabatic dynamics of the ground-state wave function.
Figures 4(b) and 4(c) show the time dependence of the
regularization terms and of the wave function, respectively.
The wave function starts from the ground state with J = 0,
i.e., Cj = 1

2
√

2
for j = 1, . . . , 8. As J is increased from 0 and

Bx is decreased, the system rapidly changes to the final state,
i.e., a linear combination of reduced bases. In Fig. 4(c) the
solution !FF(t ) of the TDSE (2.14) has exactly reproduced
the time-rescaled ground-state wave function.

In the case of N = 3 spin systems, we have obtained
the regularization terms and the fast-forward Hamiltonian
without having recourse to the three-body interaction. Of
course, we can see regularization terms which include the
three-body interaction: For a regular triangle we can have an
extra solution consisting of only the three-body interaction
(Q̃), and for the open linear three-spin system there can be
solutions where Q̃ ̸= 0 and one of W̃1 and W̃2 is nonvanishing.
However, these extra solutions are less interesting from the
viewpoint of searching for simpler controls. In the case of
N = 4 spin systems in the next section, however, we cannot
proceed without the three-body interaction, although it will
play only a subsidiary role.
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FIG. 3. Time dependence in the case of the regular triangle
in the fast-forward time range where we choose J = R(!(t )) and
Bx = B0 − R(!(t )), with R(!(t )) defined in Eq. (2.16). The other
parameters are B0 = 10, v̄ = 100, TFF = 0.1, and R0 = 0. (a) All
eight eigenvalues. From the bottom, the second and fourth lines are
doubly degenerate. (b) Regularization term v(t )W̃ . (c) Probability
amplitudes for the solution "FF(t ) of the TDSE: |CFF

2 |2 = |CFF
3 |2 =

|CFF
4 |2 = |CFF

5 |2 = |CFF
6 |2 = |CFF

7 |2 (solid line) and |CFF
1 |2 = |CFF

8 |2
(dashed line).

three-body interaction. Three W̃ yz
i j ’s should be identical due to

the triangular symmetry in Fig. 1(a). Therefore, the unknown
pairwise interaction is the only one, W̃ ≡ W̃ yz

i j , independent of
the pairs (i, j).

By using the spin configuration bases as above, the reg-
ularization Hamiltonian (3.2) is characterized by the ma-
trix elements: H̃1 j = −H̃ j1 = −2iW̃ with j = 2, 3, 4, H̃8 j =
−H̃ j8 = −2iW̃ with j = 5, 6, 7, and all other elements equal
to zero. The explicit expression for H̃ will help us solve
Eq. (2.8).

Due to the symmetry of {Cj}, there are only two indepen-
dent equations in Eq. (2.8):

−6W̃C2 = h̄
∂C1

∂R
, 2W̃C1 = h̄

∂C2

∂R
. (4.2)

Noting the normalization-assisted relation in Eq. (4.1), one
of Eqs. (4.2) becomes trivial and Eqs. (4.2) have the

FIG. 4. Same time dependence as in Fig. 3, but in the case
of the open linear three-spin chain. (a) All eight eigenvalues.
(b) Regularization terms v(t )W̃1 (dashed line) and v(t )W̃2 (dotted
line). (c) Probability amplitudes for the solution "FF(t ) of the
TDSE: |CFF

3 |2 = |CFF
6 |2 (solid line), |CFF

1 |2 = |CFF
8 |2 (dashed line),

and |CFF
2 |2 = |CFF

4 |2 = |CFF
5 |2 = |CFF

7 |2 (dotted line).

solution

W̃ = h̄
∂RC2

2C1
= h̄(C1∂RC2 − C2∂RC1)

=
Bx

∂J
∂R − J ∂Bx

∂R

4
(
B2

x + 2BxJ + 4J2
) . (4.3)

The second equality in (4.3) is due to the normalization
condition and Eq. (4.1). Including the regularization term
followed by rescaling of time, the fast-forward Hamiltonian
is written as

HFF = H0(R(!(t ))) + v(t )H̃(R(!(t ))), (4.4)

with H0 = J (R(!(t )))(σ z
1σ z

2 + σ z
2σ z

3 + σ z
3σ z

1 ) − 1
2 (σ x

1 + σ x
2 +

σ x
3 )Bx(R(!(t ))) and vH̃ = v(t )W̃ (R(!(t )))[(σ y

1 σ z
2 + σ z

1σ
y
2 )

+ (σ y
2 σ z

3 + σ z
2σ

y
3 ) + (σ y

3 σ z
1 + σ z

3σ
y
1 )].

The fast-forward Hamiltonian guarantees the fast forward
of the adiabatic dynamics of the ground-state wave function.
Figures 3(b) and 3(c) show the time dependence of the
regularization term and of the wave function, respectively.
The wave function starts from the ground state with J = 0,

062116-5



We conclude, for N = 3 spin clusters, 
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V. TRIANGULAR PYRAMID, SQUARE, STAR GRAPH,
AND OPEN LINEAR FOUR-SPIN CHAINS

Now we will investigate regular spin clusters with N =
4 spins, namely, a triangular pyramid, square, star graph,
and open linear four-spin chains in Fig. 2. Their original
(reference) and regularization Hamiltonians have already been
given in Eqs. (3.1) and (3.2), respectively, where we set
N = 4.

By using the spin configuration bases |1⟩ = |↑ ↑↑↑⟩,
|2⟩ = |↑ ↑↑↓⟩, |3⟩ = |↑ ↑↓↑⟩, |4⟩ = |↑ ↓↑↑⟩, |5⟩ =
|↓ ↑↑↑⟩, |6⟩ = |↑ ↑↓↓⟩, |7⟩ = |↑ ↓↓↑⟩, |8⟩ = |↓ ↓↑↑⟩,
|9⟩ = |↓ ↑↑↓⟩, |10⟩ = |↑ ↓↑↓⟩, |11⟩ = |↓ ↑↓↑⟩, |12⟩ =
|↓ ↓↓↑⟩, |13⟩ = |↓ ↓↑↓⟩, |14⟩ = |↓ ↑↓↓⟩, |15⟩ = |↑ ↓↓↓⟩,
and |16⟩ = |↓ ↓↓↓⟩, the matrix form for the original
Hamiltonian H0 in Eq. (3.1) can be constructed.

A. Triangular pyramid

The eigenvalue of the ground state is E0 = 1
3 [−(β +

β̄ ) + 4J +
√

3i(β − β̄ )], where β = (35J3 − 18B2
xJ +

3i
√

108J6 + 309B2
xJ4 + 3B4

xJ2 + 3B6
x )1/3. For all regular

clusters with N = 4 spins in Fig. 2, as is the case of the

preceding section, we have numerically confirmed that there
is no level crossing between the ground and first excited states
in the fast-forward time range. So figures of 16 eigenvalues
will be suppressed in this section.

The components of the eigenvector of the
ground state are C1 = C16 = V1ζ , C2 = C3 = C4 =
C5 = C12 = C13 = C14 = C15 = V2ζ , and C6 = C7 =
C8 = C9 = C10 = C11 = V6ζ . Here ζ = (2 + 8V 2

2 +
6V 2

6 )−1/2, V1 = 1, V2 = (β+β̄ )+14J−
√

3i(β−β̄ )
6Bx

, and V6 =
− 2(β2+β̄2 )−10J (β+β̄ )−(48J2+15B2

x )+i
√

3[2(β2−β̄2 )+10J (β−β̄ )]
27B2

x
, where

the equality |β|2 = 13J2 + 3B2
x is used. From the R derivative

of the normalization (2C2
1 + 8C2

2 + 6C2
6 = 1), we see that

C1
∂C1

∂R
+ 4C2

∂C2

∂R
+ 3C6

∂C6

∂R
= 0. (5.1)

If we suppress the three-body interaction, the regularization
Hamiltonian consists of only one pairwise interaction W̃ ≡
W̃ yz

i j , due to the high symmetry of the triangular pyramid
in Fig. 2(a). The corresponding matrix for the regularization
term can be written as

H̃ = i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −3W̃ −3W̃ −3W̃ −3W̃ 0 0 0 0 0 0 0 0 0 0 0
3W̃ 0 0 0 0 −W̃ 0 0 −W̃ −W̃ 0 0 0 0 0 0
3W̃ 0 0 0 0 −W̃ −W̃ 0 0 0 −W̃ 0 0 0 0 0
3W̃ 0 0 0 0 0 −W̃ −W̃ 0 −W̃ 0 0 0 0 0 0
3W̃ 0 0 0 0 0 0 −W̃ −W̃ 0 −W̃ 0 0 0 0 0
0 W̃ W̃ 0 0 0 0 0 0 0 0 0 0 W̃ W̃ 0
0 0 W̃ W̃ 0 0 0 0 0 0 0 W̃ 0 0 W̃ 0
0 0 0 W̃ W̃ 0 0 0 0 0 0 W̃ W̃ 0 0 0
0 W̃ 0 0 W̃ 0 0 0 0 0 0 0 W̃ W̃ 0 0
0 W̃ 0 W̃ 0 0 0 0 0 0 0 0 W̃ 0 W̃ 0
0 0 W̃ 0 W̃ 0 0 0 0 0 0 W̃ 0 W̃ 0 0
0 0 0 0 0 0 −W̃ −W̃ 0 0 −W̃ 0 0 0 0 3W̃
0 0 0 0 0 0 0 −W̃ −W̃ −W̃ 0 0 0 0 0 3W̃
0 0 0 0 0 −W̃ 0 0 −W̃ 0 −W̃ 0 0 0 0 3W̃
0 0 0 0 0 −W̃ −W̃ 0 0 −W̃ 0 0 0 0 0 3W̃
0 0 0 0 0 0 0 0 0 0 0 −3W̃ −3W̃ −3W̃ −3W̃ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.2)

Due to the symmetry of {Cj}, there are three independent
equations in Eq. (2.8):

−12W̃C2 = h̄
∂C1

∂R
,

3W̃C1 − 3W̃C6 = h̄
∂C2

∂R
,

4W̃C2 = h̄
∂C6

∂R
. (5.3)

While one of Eqs. (5.3) is trivial due to Eq. (5.1), we need
one more unknown variable to make meaningful the algebraic
equations (5.3). Here we evaluate the contribution of the
three-body interaction. The geometrical symmetry allows a
universal three-body interaction Q̃ ≡ Q̃xyz

i jk , independent of all
possible three-body configurations (i, j, k). The inclusion of
the three-body interaction improves some matrix elements of

H̃ in Eq. (5.2) as follows:

H̃1, jH̃16, j = −4iQ̃ for j = 6, . . . , 11,

H̃i,1 = H̃i,16 = 4iQ̃ for i = 6, . . . , 11. (5.4)

After the above improvements, the algebraic equations (5.3)
are revised as

−12W̃C2 − 24Q̃C6 = h̄
∂C1

∂R
,

3W̃C1 − 3W̃C6 = h̄
∂C2

∂R
, (5.5)

8Q̃C1 + 4W̃C2 = h̄
∂C6

∂R
,

where one of Eqs. (5.5) is again trivial because of Eq. (5.1).
Equations (5.5), whose coefficient matrix has the rank 2, give
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V. TRIANGULAR PYRAMID, SQUARE, STAR GRAPH,
AND OPEN LINEAR FOUR-SPIN CHAINS

Now we will investigate regular spin clusters with N =
4 spins, namely, a triangular pyramid, square, star graph,
and open linear four-spin chains in Fig. 2. Their original
(reference) and regularization Hamiltonians have already been
given in Eqs. (3.1) and (3.2), respectively, where we set
N = 4.

By using the spin configuration bases |1⟩ = |↑ ↑↑↑⟩,
|2⟩ = |↑ ↑↑↓⟩, |3⟩ = |↑ ↑↓↑⟩, |4⟩ = |↑ ↓↑↑⟩, |5⟩ =
|↓ ↑↑↑⟩, |6⟩ = |↑ ↑↓↓⟩, |7⟩ = |↑ ↓↓↑⟩, |8⟩ = |↓ ↓↑↑⟩,
|9⟩ = |↓ ↑↑↓⟩, |10⟩ = |↑ ↓↑↓⟩, |11⟩ = |↓ ↑↓↑⟩, |12⟩ =
|↓ ↓↓↑⟩, |13⟩ = |↓ ↓↑↓⟩, |14⟩ = |↓ ↑↓↓⟩, |15⟩ = |↑ ↓↓↓⟩,
and |16⟩ = |↓ ↓↓↓⟩, the matrix form for the original
Hamiltonian H0 in Eq. (3.1) can be constructed.

A. Triangular pyramid

The eigenvalue of the ground state is E0 = 1
3 [−(β +

β̄ ) + 4J +
√

3i(β − β̄ )], where β = (35J3 − 18B2
xJ +

3i
√

108J6 + 309B2
xJ4 + 3B4

xJ2 + 3B6
x )1/3. For all regular

clusters with N = 4 spins in Fig. 2, as is the case of the

preceding section, we have numerically confirmed that there
is no level crossing between the ground and first excited states
in the fast-forward time range. So figures of 16 eigenvalues
will be suppressed in this section.

The components of the eigenvector of the
ground state are C1 = C16 = V1ζ , C2 = C3 = C4 =
C5 = C12 = C13 = C14 = C15 = V2ζ , and C6 = C7 =
C8 = C9 = C10 = C11 = V6ζ . Here ζ = (2 + 8V 2

2 +
6V 2

6 )−1/2, V1 = 1, V2 = (β+β̄ )+14J−
√

3i(β−β̄ )
6Bx

, and V6 =
− 2(β2+β̄2 )−10J (β+β̄ )−(48J2+15B2

x )+i
√

3[2(β2−β̄2 )+10J (β−β̄ )]
27B2

x
, where

the equality |β|2 = 13J2 + 3B2
x is used. From the R derivative

of the normalization (2C2
1 + 8C2

2 + 6C2
6 = 1), we see that

C1
∂C1

∂R
+ 4C2

∂C2

∂R
+ 3C6

∂C6

∂R
= 0. (5.1)

If we suppress the three-body interaction, the regularization
Hamiltonian consists of only one pairwise interaction W̃ ≡
W̃ yz

i j , due to the high symmetry of the triangular pyramid
in Fig. 2(a). The corresponding matrix for the regularization
term can be written as

H̃ = i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −3W̃ −3W̃ −3W̃ −3W̃ 0 0 0 0 0 0 0 0 0 0 0
3W̃ 0 0 0 0 −W̃ 0 0 −W̃ −W̃ 0 0 0 0 0 0
3W̃ 0 0 0 0 −W̃ −W̃ 0 0 0 −W̃ 0 0 0 0 0
3W̃ 0 0 0 0 0 −W̃ −W̃ 0 −W̃ 0 0 0 0 0 0
3W̃ 0 0 0 0 0 0 −W̃ −W̃ 0 −W̃ 0 0 0 0 0
0 W̃ W̃ 0 0 0 0 0 0 0 0 0 0 W̃ W̃ 0
0 0 W̃ W̃ 0 0 0 0 0 0 0 W̃ 0 0 W̃ 0
0 0 0 W̃ W̃ 0 0 0 0 0 0 W̃ W̃ 0 0 0
0 W̃ 0 0 W̃ 0 0 0 0 0 0 0 W̃ W̃ 0 0
0 W̃ 0 W̃ 0 0 0 0 0 0 0 0 W̃ 0 W̃ 0
0 0 W̃ 0 W̃ 0 0 0 0 0 0 W̃ 0 W̃ 0 0
0 0 0 0 0 0 −W̃ −W̃ 0 0 −W̃ 0 0 0 0 3W̃
0 0 0 0 0 0 0 −W̃ −W̃ −W̃ 0 0 0 0 0 3W̃
0 0 0 0 0 −W̃ 0 0 −W̃ 0 −W̃ 0 0 0 0 3W̃
0 0 0 0 0 −W̃ −W̃ 0 0 −W̃ 0 0 0 0 0 3W̃
0 0 0 0 0 0 0 0 0 0 0 −3W̃ −3W̃ −3W̃ −3W̃ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.2)

Due to the symmetry of {Cj}, there are three independent
equations in Eq. (2.8):

−12W̃C2 = h̄
∂C1

∂R
,

3W̃C1 − 3W̃C6 = h̄
∂C2

∂R
,

4W̃C2 = h̄
∂C6

∂R
. (5.3)

While one of Eqs. (5.3) is trivial due to Eq. (5.1), we need
one more unknown variable to make meaningful the algebraic
equations (5.3). Here we evaluate the contribution of the
three-body interaction. The geometrical symmetry allows a
universal three-body interaction Q̃ ≡ Q̃xyz

i jk , independent of all
possible three-body configurations (i, j, k). The inclusion of
the three-body interaction improves some matrix elements of

H̃ in Eq. (5.2) as follows:

H̃1, jH̃16, j = −4iQ̃ for j = 6, . . . , 11,

H̃i,1 = H̃i,16 = 4iQ̃ for i = 6, . . . , 11. (5.4)

After the above improvements, the algebraic equations (5.3)
are revised as

−12W̃C2 − 24Q̃C6 = h̄
∂C1

∂R
,

3W̃C1 − 3W̃C6 = h̄
∂C2

∂R
, (5.5)

8Q̃C1 + 4W̃C2 = h̄
∂C6

∂R
,

where one of Eqs. (5.5) is again trivial because of Eq. (5.1).
Equations (5.5), whose coefficient matrix has the rank 2, give
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FIG. 2. (a) Triangular pyramid, (b) square, (c) primary star
graph, and (d) open linear four-spin chain. Solid lines stand for
the original exchange interactions. Dashed, dotted, dot-dashed, and
double-dot–dashed lines show the pairwise regularization interac-
tions. Each line species denotes the geometrically identical regular-
ization interaction.

the regularization term consisting of pairwise interactions de-
scribed by W̃ yz

i j = W̃ yz
i j (ϵt ) and three-body interactions Q̃xyz

i jk =
Q̃xyz

i jk (ϵt ). Other possible contributions such as a single-particle
energy due to the y component of the magnetic field (B̃y),
pairwise interaction W̃ xy

i j , and three-body interaction Q̃xxy
i jk lead

to an incompatible algebraic equation (2.8) and should be
excluded. The candidate for the regularization Hamiltonian H̃
then takes the form

H̃ =
∑

(i, j)∈all

W̃ yz
i j

(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

Q̃xyz
i jk

(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k , (3.2)

where (i, j) ∈ all and (i, j, k) ∈ all represent all possible com-
binations (not permutations) and are not limited to nearest
neighbors. The three-body interaction here is not a result of
the truncation of long-range and multibody counterdiabatic
interactions but is introduced in advance to make the core
equation solvable.

Since regular spin clusters have geometric symmetry, some
of the interactions (W̃ yz

i j ) are degenerate, as shown in Figs. 1
and 2, and the reduced number of independent interactions
should be equal to the number of independent equations in
Eq. (2.8). In the present paper, the three-body interaction will
play a subsidiary role. Below we will solve the regularization
terms and obtain the fast-forward Hamiltonian for spin clus-
ters of various geometries.

IV. REGULAR TRIANGLE AND OPEN LINEAR
THREE-SPIN CHAINS

In this section we investigate a regular triangle and open
linear three-spin chains in Fig. 1. We use the spin config-
uration bases as |1⟩ = |↑ ↑↑⟩, |2⟩ = |↑ ↑↓⟩, |3⟩ = |↑ ↓↑⟩,
|4⟩ = |↓ ↑↑⟩, |5⟩ = |↑ ↓↓⟩, |6⟩ = |↓ ↑↓⟩, |7⟩ = |↓ ↓↑⟩, and
|8⟩ = |↓ ↓↓⟩.

A. Regular triangle

In the case of the regular triangle, the eigenvalue for the
ground state is E0 = −

√
B2

x + 2BxJ + 4J2 − Bx
2 + J . We have

confirmed in Fig. 3(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state are
C1 = V1ζ , C2 = V2ζ , C3 = V3ζ , C4 = V4ζ , C5 = V5ζ , C6 =
V6ζ , C7 = V7ζ , and C8 = V8ζ , where V1 = V8 = 1, V2 = V3 =
V4 = V5 = V6 = V7 = 2

√
B2

x+2BxJ+4J2+Bx+4J
3Bx

, and ζ = 1√
2+6V 2

2

.

Here we see the symmetry C1 = C8 and C2 = C3 = C4 =
C5 = C6 = C7. From the R derivative of the normalization
(
∑8

j=1 C2
j = 2C2

1 + 6C2
2 = 1), we see that

C1
∂C1

∂R
+ 3C2

∂C2

∂R
= 0, (4.1)

and then the adiabatic phase ξ = 0.
As for the regularization Hamiltonian for the regular

triangle, we can proceed without having recourse to the
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V. TRIANGULAR PYRAMID, SQUARE, STAR GRAPH,
AND OPEN LINEAR FOUR-SPIN CHAINS

Now we will investigate regular spin clusters with N =
4 spins, namely, a triangular pyramid, square, star graph,
and open linear four-spin chains in Fig. 2. Their original
(reference) and regularization Hamiltonians have already been
given in Eqs. (3.1) and (3.2), respectively, where we set
N = 4.

By using the spin configuration bases |1⟩ = |↑ ↑↑↑⟩,
|2⟩ = |↑ ↑↑↓⟩, |3⟩ = |↑ ↑↓↑⟩, |4⟩ = |↑ ↓↑↑⟩, |5⟩ =
|↓ ↑↑↑⟩, |6⟩ = |↑ ↑↓↓⟩, |7⟩ = |↑ ↓↓↑⟩, |8⟩ = |↓ ↓↑↑⟩,
|9⟩ = |↓ ↑↑↓⟩, |10⟩ = |↑ ↓↑↓⟩, |11⟩ = |↓ ↑↓↑⟩, |12⟩ =
|↓ ↓↓↑⟩, |13⟩ = |↓ ↓↑↓⟩, |14⟩ = |↓ ↑↓↓⟩, |15⟩ = |↑ ↓↓↓⟩,
and |16⟩ = |↓ ↓↓↓⟩, the matrix form for the original
Hamiltonian H0 in Eq. (3.1) can be constructed.

A. Triangular pyramid

The eigenvalue of the ground state is E0 = 1
3 [−(β +

β̄ ) + 4J +
√

3i(β − β̄ )], where β = (35J3 − 18B2
xJ +

3i
√

108J6 + 309B2
xJ4 + 3B4

xJ2 + 3B6
x )1/3. For all regular

clusters with N = 4 spins in Fig. 2, as is the case of the

preceding section, we have numerically confirmed that there
is no level crossing between the ground and first excited states
in the fast-forward time range. So figures of 16 eigenvalues
will be suppressed in this section.

The components of the eigenvector of the
ground state are C1 = C16 = V1ζ , C2 = C3 = C4 =
C5 = C12 = C13 = C14 = C15 = V2ζ , and C6 = C7 =
C8 = C9 = C10 = C11 = V6ζ . Here ζ = (2 + 8V 2

2 +
6V 2

6 )−1/2, V1 = 1, V2 = (β+β̄ )+14J−
√

3i(β−β̄ )
6Bx

, and V6 =
− 2(β2+β̄2 )−10J (β+β̄ )−(48J2+15B2

x )+i
√

3[2(β2−β̄2 )+10J (β−β̄ )]
27B2

x
, where

the equality |β|2 = 13J2 + 3B2
x is used. From the R derivative

of the normalization (2C2
1 + 8C2

2 + 6C2
6 = 1), we see that

C1
∂C1

∂R
+ 4C2

∂C2

∂R
+ 3C6

∂C6

∂R
= 0. (5.1)

If we suppress the three-body interaction, the regularization
Hamiltonian consists of only one pairwise interaction W̃ ≡
W̃ yz

i j , due to the high symmetry of the triangular pyramid
in Fig. 2(a). The corresponding matrix for the regularization
term can be written as

H̃ = i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −3W̃ −3W̃ −3W̃ −3W̃ 0 0 0 0 0 0 0 0 0 0 0
3W̃ 0 0 0 0 −W̃ 0 0 −W̃ −W̃ 0 0 0 0 0 0
3W̃ 0 0 0 0 −W̃ −W̃ 0 0 0 −W̃ 0 0 0 0 0
3W̃ 0 0 0 0 0 −W̃ −W̃ 0 −W̃ 0 0 0 0 0 0
3W̃ 0 0 0 0 0 0 −W̃ −W̃ 0 −W̃ 0 0 0 0 0
0 W̃ W̃ 0 0 0 0 0 0 0 0 0 0 W̃ W̃ 0
0 0 W̃ W̃ 0 0 0 0 0 0 0 W̃ 0 0 W̃ 0
0 0 0 W̃ W̃ 0 0 0 0 0 0 W̃ W̃ 0 0 0
0 W̃ 0 0 W̃ 0 0 0 0 0 0 0 W̃ W̃ 0 0
0 W̃ 0 W̃ 0 0 0 0 0 0 0 0 W̃ 0 W̃ 0
0 0 W̃ 0 W̃ 0 0 0 0 0 0 W̃ 0 W̃ 0 0
0 0 0 0 0 0 −W̃ −W̃ 0 0 −W̃ 0 0 0 0 3W̃
0 0 0 0 0 0 0 −W̃ −W̃ −W̃ 0 0 0 0 0 3W̃
0 0 0 0 0 −W̃ 0 0 −W̃ 0 −W̃ 0 0 0 0 3W̃
0 0 0 0 0 −W̃ −W̃ 0 0 −W̃ 0 0 0 0 0 3W̃
0 0 0 0 0 0 0 0 0 0 0 −3W̃ −3W̃ −3W̃ −3W̃ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.2)

Due to the symmetry of {Cj}, there are three independent
equations in Eq. (2.8):

−12W̃C2 = h̄
∂C1

∂R
,

3W̃C1 − 3W̃C6 = h̄
∂C2

∂R
,

4W̃C2 = h̄
∂C6

∂R
. (5.3)

While one of Eqs. (5.3) is trivial due to Eq. (5.1), we need
one more unknown variable to make meaningful the algebraic
equations (5.3). Here we evaluate the contribution of the
three-body interaction. The geometrical symmetry allows a
universal three-body interaction Q̃ ≡ Q̃xyz

i jk , independent of all
possible three-body configurations (i, j, k). The inclusion of
the three-body interaction improves some matrix elements of

H̃ in Eq. (5.2) as follows:

H̃1, jH̃16, j = −4iQ̃ for j = 6, . . . , 11,

H̃i,1 = H̃i,16 = 4iQ̃ for i = 6, . . . , 11. (5.4)

After the above improvements, the algebraic equations (5.3)
are revised as

−12W̃C2 − 24Q̃C6 = h̄
∂C1

∂R
,

3W̃C1 − 3W̃C6 = h̄
∂C2

∂R
, (5.5)

8Q̃C1 + 4W̃C2 = h̄
∂C6

∂R
,

where one of Eqs. (5.5) is again trivial because of Eq. (5.1).
Equations (5.5), whose coefficient matrix has the rank 2, give
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the solution

W̃ = h̄∂RC2

3(C1 − C6)
, Q̃ = h̄∂R(C1 + 3C6)

24(C1 − C6)
. (5.6)

The fast-forward Hamiltonian is given by

HFF = J (R("(t )))
∑

(i, j)∈NN

σ z
i σ z

j − 1
2 Bx(R("(t )))

4∑

i=1

σ x
i

+ v(t )H̃(R("(t ))), (5.7)

with

vH̃ =
∑

(i, j)∈all

v(t )W̃ (R("(t )))
(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

v(t )Q̃(R("(t )))
(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k .

(5.8)

In the triangular pyramid,
∑

(i, j)∈NN is equivalent to
∑

(i, j)∈all.
The fast-forward Hamiltonian guarantees the fast for-
ward of the adiabatic dynamics of the ground-state wave
function.

Figures 5(a) and 6(a) show the time dependence of regu-
larization terms and of the wave function, respectively. The
wave function starts from the ground state with J = 0, i.e.,
Cj = 1

4 for j = 1, . . . , 16. In Fig. 6(a) the solution $FF(t )
of the TDSE (2.14) has exactly reproduced the time-rescaled
ground-state wave function during the fast-forward time range
0 ! t ! TFF.

B. Square

The eigenvalue of the ground state is E0 = −β1,
where β1 =

√
8J2 + 2B2

x + 2β2, with β2 =
√

16J4 + B4
x .

The components of the eigenvector of the ground
state are C1 = C16 = V1ζ , C2 = C3 = C4 = C5 = C12 =
C13 = C14 = C15 = V2ζ , C6 = C7 = C8 = C9 = V6ζ , and
C10 = C11 = V10ζ , with ζ = (8 + 2V 2

1 + 4V 2
6 + 2V 2

10)−1/2.

Here V1 = (β1−4J )(4J2−B2
x+β2 )

8J2Bx
, V2 = 1, V6 = (β2

1 −4β2 )β1

16J2Bx
, and

V10 = (β1+4J )(4J2−B2
x+β2 )

8J2Bx
. From the R derivative of the

normalization (2C2
1 + 8C2

2 + 4C2
6 + 2C2

10 = 1), we see that

C1
∂C1

∂R
+ 4C2

∂C2

∂R
+ 2C6

∂C6

∂R
+ C10

∂C10

∂R
= 0. (5.9)

The geometric symmetry of the square spin system in Fig. 2(b)
allows two candidates as regularization terms, which are
W̃12 = W̃23 = W̃34 = W̃41 = W̃1 and W̃31 = W̃42 = W̃2. Here
W̃1 and W̃2 correspond to NN and NNN interactions, respec-
tively. The regularization matrix H̃ is given in Eq. (A1). To
add one more unknown variable, we include the contribution
of the universal three-body interaction Q̃ ≡ Q̃xyz

i jk . This inclu-
sion requires the same improvement of some matrix elements
of H̃ as in Eq. (5.4).

FIG. 5. Time dependence of regularization terms multiplied by
v(t ) in the fast-forward time range where we choose J = R("(t ))
and Bx = B0 − R("(t )), with R("(t )) defined in Eq. (2.16). The
other parameters are B0 = 10, v̄ = 100, TFF = 0.1, and R0 = 0.
(a) Triangular pyramid with v(t )W̃ (dashed line) and v(t )Q̃ (solid
line). (b) Square, with v(t )W̃1 (dashed line), v(t )W̃2 (dotted line), and
v(t )Q̃ (solid line). (c) Primary star graph, with v(t )W̃1 (dashed line),
v(t )W̃2 (dotted line), and v(t )Q̃ (solid line). (d) Open linear four-
spin chain, with v(t )W̃1 (dashed line), v(t )W̃2 (dotted line), v(t )W̃3

(dot-dashed line), v(t )W̃4 (double-dot–dashed line), and v(t )Q̃ (solid
line).
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the solution

W̃ = h̄∂RC2

3(C1 − C6)
, Q̃ = h̄∂R(C1 + 3C6)

24(C1 − C6)
. (5.6)

The fast-forward Hamiltonian is given by

HFF = J (R("(t )))
∑

(i, j)∈NN

σ z
i σ z

j − 1
2 Bx(R("(t )))

4∑

i=1

σ x
i

+ v(t )H̃(R("(t ))), (5.7)

with

vH̃ =
∑

(i, j)∈all

v(t )W̃ (R("(t )))
(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

v(t )Q̃(R("(t )))
(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k .

(5.8)

In the triangular pyramid,
∑

(i, j)∈NN is equivalent to
∑

(i, j)∈all.
The fast-forward Hamiltonian guarantees the fast for-
ward of the adiabatic dynamics of the ground-state wave
function.

Figures 5(a) and 6(a) show the time dependence of regu-
larization terms and of the wave function, respectively. The
wave function starts from the ground state with J = 0, i.e.,
Cj = 1

4 for j = 1, . . . , 16. In Fig. 6(a) the solution $FF(t )
of the TDSE (2.14) has exactly reproduced the time-rescaled
ground-state wave function during the fast-forward time range
0 ! t ! TFF.

B. Square

The eigenvalue of the ground state is E0 = −β1,
where β1 =

√
8J2 + 2B2

x + 2β2, with β2 =
√

16J4 + B4
x .

The components of the eigenvector of the ground
state are C1 = C16 = V1ζ , C2 = C3 = C4 = C5 = C12 =
C13 = C14 = C15 = V2ζ , C6 = C7 = C8 = C9 = V6ζ , and
C10 = C11 = V10ζ , with ζ = (8 + 2V 2

1 + 4V 2
6 + 2V 2

10)−1/2.

Here V1 = (β1−4J )(4J2−B2
x+β2 )

8J2Bx
, V2 = 1, V6 = (β2

1 −4β2 )β1

16J2Bx
, and

V10 = (β1+4J )(4J2−B2
x+β2 )

8J2Bx
. From the R derivative of the

normalization (2C2
1 + 8C2

2 + 4C2
6 + 2C2

10 = 1), we see that

C1
∂C1

∂R
+ 4C2

∂C2

∂R
+ 2C6

∂C6

∂R
+ C10

∂C10

∂R
= 0. (5.9)

The geometric symmetry of the square spin system in Fig. 2(b)
allows two candidates as regularization terms, which are
W̃12 = W̃23 = W̃34 = W̃41 = W̃1 and W̃31 = W̃42 = W̃2. Here
W̃1 and W̃2 correspond to NN and NNN interactions, respec-
tively. The regularization matrix H̃ is given in Eq. (A1). To
add one more unknown variable, we include the contribution
of the universal three-body interaction Q̃ ≡ Q̃xyz

i jk . This inclu-
sion requires the same improvement of some matrix elements
of H̃ as in Eq. (5.4).

FIG. 5. Time dependence of regularization terms multiplied by
v(t ) in the fast-forward time range where we choose J = R("(t ))
and Bx = B0 − R("(t )), with R("(t )) defined in Eq. (2.16). The
other parameters are B0 = 10, v̄ = 100, TFF = 0.1, and R0 = 0.
(a) Triangular pyramid with v(t )W̃ (dashed line) and v(t )Q̃ (solid
line). (b) Square, with v(t )W̃1 (dashed line), v(t )W̃2 (dotted line), and
v(t )Q̃ (solid line). (c) Primary star graph, with v(t )W̃1 (dashed line),
v(t )W̃2 (dotted line), and v(t )Q̃ (solid line). (d) Open linear four-
spin chain, with v(t )W̃1 (dashed line), v(t )W̃2 (dotted line), v(t )W̃3

(dot-dashed line), v(t )W̃4 (double-dot–dashed line), and v(t )Q̃ (solid
line).
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FIG. 6. Time dependence of probability amplitudes |CFF
j |2 with

j = 1–16 for the solution !FF(t ) of the TDSE in the fast-forward
time range, where we choose J = R("(t )) and Bx = B0 − R("(t )),
with R("(t )) defined in Eq. (2.16). The other parameters are B0 =
10, v̄ = 100, TFF = 0.1, and R0 = 0. (a) Triangular pyramid, with
j = 1, 16 (dashed line), j = 2–5 and 12–15 (dotted line), and j =
6–11 (solid line). (b) Square, with j = 1, 16 (dot-dashed line), j =
2–5 and 12–15 (dotted line), j = 6–9 (dashed line), and j = 10, 11
(solid line). (c) Primary star graph, with j = 1, 16 (dashed line), j =
2, 3, 5, 12, 13, 15 (dotted line), j = 4, 14 (solid line), and j = 6–11
(dot-dashed line). (d) Open linear four-spin chain, with j = 1, 16
(lower solid line), j = 2, 5, 12, 15 (dot-dashed line), j = 3, 4, 13, 14
(dashed line), j = 6, 8 (dotted line), j = 7, 9 (double-dot–dashed
line), and j = 10, 11(upper solid line).

Due to the symmetry of {Cj}, there are four independent
algebraic equations

(−8W̃1 − 4W̃2)C2 − 16Q̃C6 − 8Q̃C10 = h̄
∂C1

∂R
, (5.10a)

(2W̃1 + W̃2)C1 + (−2W̃2)C6 + (−2W̃1 + W̃2)C10 = h̄
∂C2

∂R
,

(5.10b)

8Q̃C1 + 4W̃2C2 = h̄
∂C6

∂R
, (5.10c)

8Q̃C1 + (8W̃1 − 4W̃2)C2 = h̄
∂C10

∂R
. (5.10d)

Because of Eq. (5.9), one of Eqs. (5.10) is trivial. Ignoring
Eq. (5.10b), for example, Eqs. (5.10a), (5.10c), and (5.10d),
whose coefficient matrix has the rank 3, give the solution

W̃1 = − h̄
8(3C1 − C10 − 2C6)C2

[C1∂RC1 − 4C2∂RC2

+ (C1 + C10)∂RC6 − (C1 − 2C6)∂RC10],

W̃2 = −h̄
C1∂RC1 − (C1 − 2C6 − C10)∂RC6 + C1∂RC10

4(3C1 − C10 − 2C6)C2
,

Q̃ = h̄∂R(C1 + 2C6 + C10)
8(3C1 − C10 − 2C6)C2

. (5.11)

The fast-forward Hamiltonian is given by Eq. (5.7), where
v(t )H̃(R("(t ))) is now replaced by

vH̃ =
∑

(i, j)=(1,2),(2,3),(3,4),(4,1)

v(t )W̃1(R("(t )))
(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j)=(3,1),(4,2)

v(t )W̃2(R("(t )))
(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

v(t )Q̃(R("(t )))
(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k .

(5.12)

Figures 5(b) and 6(b) show the time dependence of regu-
larization terms and of the wave function, respectively. The
wave function starts from the ground state with J = 0, i.e.,
Cj = 1

4 for j = 1, . . . , 16. In Fig. 6(b) the solution !FF(t )
of the TDSE (2.14) has exactly reproduced the time-rescaled
ground-state wave function.

C. Primary star graph

The eigenvalue of the ground state is E0 = −β, where β =√
2B2

x+5J2+2
√

B4
x+B2

xJ2+4J4. The components of the eigen-
vector of the ground state are C1 = C16 = V1ζ , C2 = C3 =
C5 = C12 = C13 = C15 = V2ζ , C4 = C14 = V4ζ , and C6 =
C7 = C8 = C9 = C10 = C11 = V6ζ , with ζ = (6 + 2V 2

1 +
6V 2

2 + 2V 2
4 )−1/2. Here V1 = −J (7B2

x+3J2 )+β(4B2
x+3βJ−β2+J2 )

5JB2
x

,
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FIG. 2. (a) Triangular pyramid, (b) square, (c) primary star
graph, and (d) open linear four-spin chain. Solid lines stand for
the original exchange interactions. Dashed, dotted, dot-dashed, and
double-dot–dashed lines show the pairwise regularization interac-
tions. Each line species denotes the geometrically identical regular-
ization interaction.

the regularization term consisting of pairwise interactions de-
scribed by W̃ yz

i j = W̃ yz
i j (ϵt ) and three-body interactions Q̃xyz

i jk =
Q̃xyz

i jk (ϵt ). Other possible contributions such as a single-particle
energy due to the y component of the magnetic field (B̃y),
pairwise interaction W̃ xy

i j , and three-body interaction Q̃xxy
i jk lead

to an incompatible algebraic equation (2.8) and should be
excluded. The candidate for the regularization Hamiltonian H̃
then takes the form

H̃ =
∑

(i, j)∈all

W̃ yz
i j

(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

Q̃xyz
i jk

(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k , (3.2)

where (i, j) ∈ all and (i, j, k) ∈ all represent all possible com-
binations (not permutations) and are not limited to nearest
neighbors. The three-body interaction here is not a result of
the truncation of long-range and multibody counterdiabatic
interactions but is introduced in advance to make the core
equation solvable.

Since regular spin clusters have geometric symmetry, some
of the interactions (W̃ yz

i j ) are degenerate, as shown in Figs. 1
and 2, and the reduced number of independent interactions
should be equal to the number of independent equations in
Eq. (2.8). In the present paper, the three-body interaction will
play a subsidiary role. Below we will solve the regularization
terms and obtain the fast-forward Hamiltonian for spin clus-
ters of various geometries.

IV. REGULAR TRIANGLE AND OPEN LINEAR
THREE-SPIN CHAINS

In this section we investigate a regular triangle and open
linear three-spin chains in Fig. 1. We use the spin config-
uration bases as |1⟩ = |↑ ↑↑⟩, |2⟩ = |↑ ↑↓⟩, |3⟩ = |↑ ↓↑⟩,
|4⟩ = |↓ ↑↑⟩, |5⟩ = |↑ ↓↓⟩, |6⟩ = |↓ ↑↓⟩, |7⟩ = |↓ ↓↑⟩, and
|8⟩ = |↓ ↓↓⟩.

A. Regular triangle

In the case of the regular triangle, the eigenvalue for the
ground state is E0 = −

√
B2

x + 2BxJ + 4J2 − Bx
2 + J . We have

confirmed in Fig. 3(a) that all eight eigenvalues show no
mutual energy crossing in the fast-forward time range where
we choose J (R(#(t ))) ≡ R(#(t )) and Bx(R(#(t ))) ≡ B0 −
R(#(t )), with R(#(t )) defined in Eq. (2.16).

The components of the eigenvector for the ground state are
C1 = V1ζ , C2 = V2ζ , C3 = V3ζ , C4 = V4ζ , C5 = V5ζ , C6 =
V6ζ , C7 = V7ζ , and C8 = V8ζ , where V1 = V8 = 1, V2 = V3 =
V4 = V5 = V6 = V7 = 2

√
B2

x+2BxJ+4J2+Bx+4J
3Bx

, and ζ = 1√
2+6V 2

2

.

Here we see the symmetry C1 = C8 and C2 = C3 = C4 =
C5 = C6 = C7. From the R derivative of the normalization
(
∑8

j=1 C2
j = 2C2

1 + 6C2
2 = 1), we see that

C1
∂C1

∂R
+ 3C2

∂C2

∂R
= 0, (4.1)

and then the adiabatic phase ξ = 0.
As for the regularization Hamiltonian for the regular

triangle, we can proceed without having recourse to the
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V2 = −2J (9J2−4B2
x )+β(4B2

x−2βJ−β2+21J2 )
30J2Bx

, V4 =
−2J (J2+4B2

x )−β(4B2
x−2βJ−β2+J2 )

10J2Bx
, and V6 = 1. From the R

derivative of the normalization (2C2
1 + 6C2

2 + 2C2
4 + 6C2

6 =
1), we see that

C1
∂C1

∂R
+ 3C2

∂C2

∂R
+ C4

∂C4

∂R
+ 3C6

∂C6

∂R
= 0. (5.13)

The geometric symmetry of the primary star graph
spin system in Fig. 2(c) allows two candidates as
regularization terms, which are W̃12 = W̃23 = W̃24 = W̃1
and W̃14 = W̃13 = W̃34 = W̃2. Here W̃1 and W̃2 correspond to
NN and NNN interactions, respectively. The matrix for the
regularization term H̃ can be written in Eq. (A2). To add
one more unknown variable, we include the contribution of
the universal three-body interaction Q̃ ≡ Q̃xyz

i jk . This inclusion
requires the same improvement of some matrix elements of H̃
as in Eq. (5.4). One might have the idea to include two species
of three-body interactions with one among NNs and another
among NNNs; however, this idea results in incompatible
equations in Eq. (2.8) and cannot be acceptable. Due to the
symmetry of {Cj}, there are four independent equations

(−6W̃2 − 3W̃1)C2 + (−3W̃1)C4 − 24Q̃C6 = h̄
∂C1

∂R
, (5.14a)

(2W̃2 + W̃1)C1 + (−3W̃1)C6 = h̄
∂C2

∂R
, (5.14b)

(3W̃1)C1 + (3W̃1 − 6W̃2)C6 = h̄
∂C4

∂R
, (5.14c)

8Q̃C1 + (3W̃1)C2 + (−W̃1 + 2W̃2)C4 = h̄
∂C6

∂R
. (5.14d)

Because of Eq. (5.13), one of Eqs. (5.14) becomes triv-
ial. Ignoring Eq. (5.14a), for example, Eqs. (5.14b)–(5.14d),
whose coefficient matrix has the rank 3, give the solution

W̃1 = h̄
C1∂RC4 + 3C6∂RC2

3(C1 − C6)(C1 + 3C6)
,

W̃2 = h̄
3(C1 + C6)∂RC2 − (C1 − 3C6)∂RC4

6(C1 − C6)(C1 + 3C6)
,

Q̃ = h̄
24C1(C1 − C6)(C1 + 3C6)

×
[
3
(
C2

1 + 2C1C6 − 3C2
6

)
∂RC6

− 3(3C2C6 + C1C4)∂RC2

− (3C1C2 − 2C1C4 + 3C4C6)∂RC4]. (5.15)

The fast-forward Hamiltonian is given by Eq. (5.7), where
v(t )H̃(R(#(t ))) is replaced by

vH̃ =
∑

(i, j)=(1,2),(2,3),(2,4)

v(t )W̃1(R(#(t )))
(
σ

y
i σ z

j + σ z
i σ

y
j

)
+

∑

(i, j)=(1,4),(1,3),(3,4)

v(t )W̃2(R(#(t )))
(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

v(t )Q̃(R(#(t )))
(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k . (5.16)

Figures 5(c) and 6(c) show the time dependence of regularization terms and of the wave function, respectively. The wave
function starts from the ground state with J = 0, i.e., Cj = 1

4 for j = 1, . . . , 16. In Fig. 6(c) the solution %FF(t ) of the TDSE
(2.14) has exactly reproduced the time-rescaled ground-state wave function.

D. Open linear four-spin chain

The eigenvalue of the ground state is E0 = − β2√
3
, where β2 =

√
2(β1 + β̄1) + 11J2 + 4B2

x , with β1 = (64J6 + 15J4B2
x +

21B4
xJ2 + 8B6

x + 3
√

3J2Bxi
√

128J6 + 93J4B2
x + 51B4

xJ2 + 25B6
x )1/3, and |β1|2 = 4B4

x + 7B2
xJ2 + 16J4. The components of the

eigenvector of the ground state are C1 = C16 = V1ζ , C2 = C5 = C12 = C15 = V2ζ , C3 = C4 = C13 = C14 = V3ζ , C6 = C8 = V6ζ ,
C7 = C9 = V7ζ , and C10 = C11 = V10ζ , with ζ = (2 + 4V 2

2 + 4V 2
3 + 2V 2

6 + 2V 2
7 + 2V 2

10)−1/2. Here

V1 = 1,

V2 = −
√

3J2β2
(
180B2

x + 144J2
)
−

√
3β3

2

(
12B2

x + 33J2
)
+

√
3β5

2 − 162J5

162J4Bx
,

V3 =
√

3J2β2
(
180B2

x + 198J2
)
−

√
3β3

2

(
12B2

x + 33J2
)
+

√
3β5

2 + 324J5

162J4Bx
,

V6 =
−

√
3J2β2

(
144B2

x + 81J2
)
− Jβ2

2

(
36B2

x + 90J2
)
+

√
3β3

2

(
12B2

x + 30J2
)
+ 3Jβ4

2 −
√

3β5
2 + 243J5 + 648B2

xJ3

216B2
xJ3

,

V7 = −
√

3J2β2
(
144B2

x + 81J2
)
− Jβ2

2

(
36B2

x + 90J2
)
−

√
3β3

2

(
12B2

x + 30J2
)
+ 3Jβ4

2 +
√

3β5
2 + 243J5 + 324J3B2

x

108B2
xJ3

,
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V2 = −2J (9J2−4B2
x )+β(4B2

x−2βJ−β2+21J2 )
30J2Bx

, V4 =
−2J (J2+4B2

x )−β(4B2
x−2βJ−β2+J2 )

10J2Bx
, and V6 = 1. From the R

derivative of the normalization (2C2
1 + 6C2

2 + 2C2
4 + 6C2

6 =
1), we see that

C1
∂C1

∂R
+ 3C2

∂C2

∂R
+ C4

∂C4

∂R
+ 3C6

∂C6

∂R
= 0. (5.13)

The geometric symmetry of the primary star graph
spin system in Fig. 2(c) allows two candidates as
regularization terms, which are W̃12 = W̃23 = W̃24 = W̃1
and W̃14 = W̃13 = W̃34 = W̃2. Here W̃1 and W̃2 correspond to
NN and NNN interactions, respectively. The matrix for the
regularization term H̃ can be written in Eq. (A2). To add
one more unknown variable, we include the contribution of
the universal three-body interaction Q̃ ≡ Q̃xyz

i jk . This inclusion
requires the same improvement of some matrix elements of H̃
as in Eq. (5.4). One might have the idea to include two species
of three-body interactions with one among NNs and another
among NNNs; however, this idea results in incompatible
equations in Eq. (2.8) and cannot be acceptable. Due to the
symmetry of {Cj}, there are four independent equations

(−6W̃2 − 3W̃1)C2 + (−3W̃1)C4 − 24Q̃C6 = h̄
∂C1

∂R
, (5.14a)

(2W̃2 + W̃1)C1 + (−3W̃1)C6 = h̄
∂C2

∂R
, (5.14b)

(3W̃1)C1 + (3W̃1 − 6W̃2)C6 = h̄
∂C4

∂R
, (5.14c)

8Q̃C1 + (3W̃1)C2 + (−W̃1 + 2W̃2)C4 = h̄
∂C6

∂R
. (5.14d)

Because of Eq. (5.13), one of Eqs. (5.14) becomes triv-
ial. Ignoring Eq. (5.14a), for example, Eqs. (5.14b)–(5.14d),
whose coefficient matrix has the rank 3, give the solution

W̃1 = h̄
C1∂RC4 + 3C6∂RC2

3(C1 − C6)(C1 + 3C6)
,

W̃2 = h̄
3(C1 + C6)∂RC2 − (C1 − 3C6)∂RC4

6(C1 − C6)(C1 + 3C6)
,

Q̃ = h̄
24C1(C1 − C6)(C1 + 3C6)

×
[
3
(
C2

1 + 2C1C6 − 3C2
6

)
∂RC6

− 3(3C2C6 + C1C4)∂RC2

− (3C1C2 − 2C1C4 + 3C4C6)∂RC4]. (5.15)

The fast-forward Hamiltonian is given by Eq. (5.7), where
v(t )H̃(R(#(t ))) is replaced by

vH̃ =
∑

(i, j)=(1,2),(2,3),(2,4)

v(t )W̃1(R(#(t )))
(
σ

y
i σ z

j + σ z
i σ

y
j

)
+

∑

(i, j)=(1,4),(1,3),(3,4)

v(t )W̃2(R(#(t )))
(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

v(t )Q̃(R(#(t )))
(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k . (5.16)

Figures 5(c) and 6(c) show the time dependence of regularization terms and of the wave function, respectively. The wave
function starts from the ground state with J = 0, i.e., Cj = 1

4 for j = 1, . . . , 16. In Fig. 6(c) the solution %FF(t ) of the TDSE
(2.14) has exactly reproduced the time-rescaled ground-state wave function.

D. Open linear four-spin chain

The eigenvalue of the ground state is E0 = − β2√
3
, where β2 =

√
2(β1 + β̄1) + 11J2 + 4B2

x , with β1 = (64J6 + 15J4B2
x +

21B4
xJ2 + 8B6

x + 3
√

3J2Bxi
√

128J6 + 93J4B2
x + 51B4

xJ2 + 25B6
x )1/3, and |β1|2 = 4B4

x + 7B2
xJ2 + 16J4. The components of the

eigenvector of the ground state are C1 = C16 = V1ζ , C2 = C5 = C12 = C15 = V2ζ , C3 = C4 = C13 = C14 = V3ζ , C6 = C8 = V6ζ ,
C7 = C9 = V7ζ , and C10 = C11 = V10ζ , with ζ = (2 + 4V 2

2 + 4V 2
3 + 2V 2

6 + 2V 2
7 + 2V 2

10)−1/2. Here

V1 = 1,

V2 = −
√

3J2β2
(
180B2

x + 144J2
)
−

√
3β3

2

(
12B2

x + 33J2
)
+

√
3β5

2 − 162J5

162J4Bx
,

V3 =
√

3J2β2
(
180B2

x + 198J2
)
−

√
3β3

2

(
12B2

x + 33J2
)
+

√
3β5

2 + 324J5

162J4Bx
,

V6 =
−

√
3J2β2

(
144B2

x + 81J2
)
− Jβ2

2

(
36B2

x + 90J2
)
+

√
3β3

2

(
12B2

x + 30J2
)
+ 3Jβ4

2 −
√

3β5
2 + 243J5 + 648B2

xJ3

216B2
xJ3

,

V7 = −
√

3J2β2
(
144B2

x + 81J2
)
− Jβ2
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x + 90J2
)
−

√
3β3

2

(
12B2

x + 30J2
)
+ 3Jβ4

2 +
√

3β5
2 + 243J5 + 324J3B2

x

108B2
xJ3

,
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V2 = −2J (9J2−4B2
x )+β(4B2

x−2βJ−β2+21J2 )
30J2Bx

, V4 =
−2J (J2+4B2

x )−β(4B2
x−2βJ−β2+J2 )

10J2Bx
, and V6 = 1. From the R

derivative of the normalization (2C2
1 + 6C2

2 + 2C2
4 + 6C2

6 =
1), we see that

C1
∂C1

∂R
+ 3C2

∂C2

∂R
+ C4

∂C4

∂R
+ 3C6

∂C6

∂R
= 0. (5.13)

The geometric symmetry of the primary star graph
spin system in Fig. 2(c) allows two candidates as
regularization terms, which are W̃12 = W̃23 = W̃24 = W̃1
and W̃14 = W̃13 = W̃34 = W̃2. Here W̃1 and W̃2 correspond to
NN and NNN interactions, respectively. The matrix for the
regularization term H̃ can be written in Eq. (A2). To add
one more unknown variable, we include the contribution of
the universal three-body interaction Q̃ ≡ Q̃xyz

i jk . This inclusion
requires the same improvement of some matrix elements of H̃
as in Eq. (5.4). One might have the idea to include two species
of three-body interactions with one among NNs and another
among NNNs; however, this idea results in incompatible
equations in Eq. (2.8) and cannot be acceptable. Due to the
symmetry of {Cj}, there are four independent equations

(−6W̃2 − 3W̃1)C2 + (−3W̃1)C4 − 24Q̃C6 = h̄
∂C1
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, (5.14a)
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, (5.14b)
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∂R
, (5.14c)

8Q̃C1 + (3W̃1)C2 + (−W̃1 + 2W̃2)C4 = h̄
∂C6

∂R
. (5.14d)

Because of Eq. (5.13), one of Eqs. (5.14) becomes triv-
ial. Ignoring Eq. (5.14a), for example, Eqs. (5.14b)–(5.14d),
whose coefficient matrix has the rank 3, give the solution

W̃1 = h̄
C1∂RC4 + 3C6∂RC2

3(C1 − C6)(C1 + 3C6)
,

W̃2 = h̄
3(C1 + C6)∂RC2 − (C1 − 3C6)∂RC4

6(C1 − C6)(C1 + 3C6)
,

Q̃ = h̄
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×
[
3
(
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1 + 2C1C6 − 3C2
6

)
∂RC6

− 3(3C2C6 + C1C4)∂RC2

− (3C1C2 − 2C1C4 + 3C4C6)∂RC4]. (5.15)

The fast-forward Hamiltonian is given by Eq. (5.7), where
v(t )H̃(R(#(t ))) is replaced by

vH̃ =
∑

(i, j)=(1,2),(2,3),(2,4)

v(t )W̃1(R(#(t )))
(
σ
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i σ z

j + σ z
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)
+
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(i, j)=(1,4),(1,3),(3,4)
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+
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(i, j,k)∈all

v(t )Q̃(R(#(t )))
(
σ x
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j + σ
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)
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Figures 5(c) and 6(c) show the time dependence of regularization terms and of the wave function, respectively. The wave
function starts from the ground state with J = 0, i.e., Cj = 1

4 for j = 1, . . . , 16. In Fig. 6(c) the solution %FF(t ) of the TDSE
(2.14) has exactly reproduced the time-rescaled ground-state wave function.

D. Open linear four-spin chain

The eigenvalue of the ground state is E0 = − β2√
3
, where β2 =
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2(β1 + β̄1) + 11J2 + 4B2
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x +
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xJ2 + 16J4. The components of the

eigenvector of the ground state are C1 = C16 = V1ζ , C2 = C5 = C12 = C15 = V2ζ , C3 = C4 = C13 = C14 = V3ζ , C6 = C8 = V6ζ ,
C7 = C9 = V7ζ , and C10 = C11 = V10ζ , with ζ = (2 + 4V 2
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3 + 2V 2
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V2 = −2J (9J2−4B2
x )+β(4B2

x−2βJ−β2+21J2 )
30J2Bx

, V4 =
−2J (J2+4B2

x )−β(4B2
x−2βJ−β2+J2 )

10J2Bx
, and V6 = 1. From the R

derivative of the normalization (2C2
1 + 6C2

2 + 2C2
4 + 6C2

6 =
1), we see that

C1
∂C1

∂R
+ 3C2

∂C2
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+ C4

∂C4
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+ 3C6

∂C6
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= 0. (5.13)

The geometric symmetry of the primary star graph
spin system in Fig. 2(c) allows two candidates as
regularization terms, which are W̃12 = W̃23 = W̃24 = W̃1
and W̃14 = W̃13 = W̃34 = W̃2. Here W̃1 and W̃2 correspond to
NN and NNN interactions, respectively. The matrix for the
regularization term H̃ can be written in Eq. (A2). To add
one more unknown variable, we include the contribution of
the universal three-body interaction Q̃ ≡ Q̃xyz

i jk . This inclusion
requires the same improvement of some matrix elements of H̃
as in Eq. (5.4). One might have the idea to include two species
of three-body interactions with one among NNs and another
among NNNs; however, this idea results in incompatible
equations in Eq. (2.8) and cannot be acceptable. Due to the
symmetry of {Cj}, there are four independent equations

(−6W̃2 − 3W̃1)C2 + (−3W̃1)C4 − 24Q̃C6 = h̄
∂C1

∂R
, (5.14a)

(2W̃2 + W̃1)C1 + (−3W̃1)C6 = h̄
∂C2
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, (5.14b)

(3W̃1)C1 + (3W̃1 − 6W̃2)C6 = h̄
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∂R
, (5.14c)

8Q̃C1 + (3W̃1)C2 + (−W̃1 + 2W̃2)C4 = h̄
∂C6

∂R
. (5.14d)

Because of Eq. (5.13), one of Eqs. (5.14) becomes triv-
ial. Ignoring Eq. (5.14a), for example, Eqs. (5.14b)–(5.14d),
whose coefficient matrix has the rank 3, give the solution

W̃1 = h̄
C1∂RC4 + 3C6∂RC2

3(C1 − C6)(C1 + 3C6)
,

W̃2 = h̄
3(C1 + C6)∂RC2 − (C1 − 3C6)∂RC4

6(C1 − C6)(C1 + 3C6)
,

Q̃ = h̄
24C1(C1 − C6)(C1 + 3C6)

×
[
3
(
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1 + 2C1C6 − 3C2
6

)
∂RC6

− 3(3C2C6 + C1C4)∂RC2

− (3C1C2 − 2C1C4 + 3C4C6)∂RC4]. (5.15)

The fast-forward Hamiltonian is given by Eq. (5.7), where
v(t )H̃(R(#(t ))) is replaced by

vH̃ =
∑

(i, j)=(1,2),(2,3),(2,4)

v(t )W̃1(R(#(t )))
(
σ

y
i σ z
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)
+
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+
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v(t )Q̃(R(#(t )))
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Figures 5(c) and 6(c) show the time dependence of regularization terms and of the wave function, respectively. The wave
function starts from the ground state with J = 0, i.e., Cj = 1

4 for j = 1, . . . , 16. In Fig. 6(c) the solution %FF(t ) of the TDSE
(2.14) has exactly reproduced the time-rescaled ground-state wave function.

D. Open linear four-spin chain

The eigenvalue of the ground state is E0 = − β2√
3
, where β2 =
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√
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xJ2 + 16J4. The components of the

eigenvector of the ground state are C1 = C16 = V1ζ , C2 = C5 = C12 = C15 = V2ζ , C3 = C4 = C13 = C14 = V3ζ , C6 = C8 = V6ζ ,
C7 = C9 = V7ζ , and C10 = C11 = V10ζ , with ζ = (2 + 4V 2
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the solution

W̃ = h̄∂RC2

3(C1 − C6)
, Q̃ = h̄∂R(C1 + 3C6)

24(C1 − C6)
. (5.6)

The fast-forward Hamiltonian is given by

HFF = J (R("(t )))
∑

(i, j)∈NN

σ z
i σ z

j − 1
2 Bx(R("(t )))

4∑

i=1

σ x
i

+ v(t )H̃(R("(t ))), (5.7)

with

vH̃ =
∑

(i, j)∈all

v(t )W̃ (R("(t )))
(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

v(t )Q̃(R("(t )))
(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k .

(5.8)

In the triangular pyramid,
∑

(i, j)∈NN is equivalent to
∑

(i, j)∈all.
The fast-forward Hamiltonian guarantees the fast for-
ward of the adiabatic dynamics of the ground-state wave
function.

Figures 5(a) and 6(a) show the time dependence of regu-
larization terms and of the wave function, respectively. The
wave function starts from the ground state with J = 0, i.e.,
Cj = 1

4 for j = 1, . . . , 16. In Fig. 6(a) the solution $FF(t )
of the TDSE (2.14) has exactly reproduced the time-rescaled
ground-state wave function during the fast-forward time range
0 ! t ! TFF.

B. Square

The eigenvalue of the ground state is E0 = −β1,
where β1 =

√
8J2 + 2B2

x + 2β2, with β2 =
√

16J4 + B4
x .

The components of the eigenvector of the ground
state are C1 = C16 = V1ζ , C2 = C3 = C4 = C5 = C12 =
C13 = C14 = C15 = V2ζ , C6 = C7 = C8 = C9 = V6ζ , and
C10 = C11 = V10ζ , with ζ = (8 + 2V 2

1 + 4V 2
6 + 2V 2

10)−1/2.

Here V1 = (β1−4J )(4J2−B2
x+β2 )

8J2Bx
, V2 = 1, V6 = (β2

1 −4β2 )β1

16J2Bx
, and

V10 = (β1+4J )(4J2−B2
x+β2 )

8J2Bx
. From the R derivative of the

normalization (2C2
1 + 8C2

2 + 4C2
6 + 2C2

10 = 1), we see that

C1
∂C1

∂R
+ 4C2

∂C2

∂R
+ 2C6

∂C6

∂R
+ C10

∂C10

∂R
= 0. (5.9)

The geometric symmetry of the square spin system in Fig. 2(b)
allows two candidates as regularization terms, which are
W̃12 = W̃23 = W̃34 = W̃41 = W̃1 and W̃31 = W̃42 = W̃2. Here
W̃1 and W̃2 correspond to NN and NNN interactions, respec-
tively. The regularization matrix H̃ is given in Eq. (A1). To
add one more unknown variable, we include the contribution
of the universal three-body interaction Q̃ ≡ Q̃xyz

i jk . This inclu-
sion requires the same improvement of some matrix elements
of H̃ as in Eq. (5.4).

FIG. 5. Time dependence of regularization terms multiplied by
v(t ) in the fast-forward time range where we choose J = R("(t ))
and Bx = B0 − R("(t )), with R("(t )) defined in Eq. (2.16). The
other parameters are B0 = 10, v̄ = 100, TFF = 0.1, and R0 = 0.
(a) Triangular pyramid with v(t )W̃ (dashed line) and v(t )Q̃ (solid
line). (b) Square, with v(t )W̃1 (dashed line), v(t )W̃2 (dotted line), and
v(t )Q̃ (solid line). (c) Primary star graph, with v(t )W̃1 (dashed line),
v(t )W̃2 (dotted line), and v(t )Q̃ (solid line). (d) Open linear four-
spin chain, with v(t )W̃1 (dashed line), v(t )W̃2 (dotted line), v(t )W̃3

(dot-dashed line), v(t )W̃4 (double-dot–dashed line), and v(t )Q̃ (solid
line).
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FIG. 6. Time dependence of probability amplitudes |CFF
j |2 with

j = 1–16 for the solution !FF(t ) of the TDSE in the fast-forward
time range, where we choose J = R("(t )) and Bx = B0 − R("(t )),
with R("(t )) defined in Eq. (2.16). The other parameters are B0 =
10, v̄ = 100, TFF = 0.1, and R0 = 0. (a) Triangular pyramid, with
j = 1, 16 (dashed line), j = 2–5 and 12–15 (dotted line), and j =
6–11 (solid line). (b) Square, with j = 1, 16 (dot-dashed line), j =
2–5 and 12–15 (dotted line), j = 6–9 (dashed line), and j = 10, 11
(solid line). (c) Primary star graph, with j = 1, 16 (dashed line), j =
2, 3, 5, 12, 13, 15 (dotted line), j = 4, 14 (solid line), and j = 6–11
(dot-dashed line). (d) Open linear four-spin chain, with j = 1, 16
(lower solid line), j = 2, 5, 12, 15 (dot-dashed line), j = 3, 4, 13, 14
(dashed line), j = 6, 8 (dotted line), j = 7, 9 (double-dot–dashed
line), and j = 10, 11(upper solid line).

Due to the symmetry of {Cj}, there are four independent
algebraic equations

(−8W̃1 − 4W̃2)C2 − 16Q̃C6 − 8Q̃C10 = h̄
∂C1

∂R
, (5.10a)

(2W̃1 + W̃2)C1 + (−2W̃2)C6 + (−2W̃1 + W̃2)C10 = h̄
∂C2

∂R
,

(5.10b)

8Q̃C1 + 4W̃2C2 = h̄
∂C6

∂R
, (5.10c)

8Q̃C1 + (8W̃1 − 4W̃2)C2 = h̄
∂C10

∂R
. (5.10d)

Because of Eq. (5.9), one of Eqs. (5.10) is trivial. Ignoring
Eq. (5.10b), for example, Eqs. (5.10a), (5.10c), and (5.10d),
whose coefficient matrix has the rank 3, give the solution

W̃1 = − h̄
8(3C1 − C10 − 2C6)C2

[C1∂RC1 − 4C2∂RC2

+ (C1 + C10)∂RC6 − (C1 − 2C6)∂RC10],

W̃2 = −h̄
C1∂RC1 − (C1 − 2C6 − C10)∂RC6 + C1∂RC10

4(3C1 − C10 − 2C6)C2
,

Q̃ = h̄∂R(C1 + 2C6 + C10)
8(3C1 − C10 − 2C6)C2

. (5.11)

The fast-forward Hamiltonian is given by Eq. (5.7), where
v(t )H̃(R("(t ))) is now replaced by

vH̃ =
∑

(i, j)=(1,2),(2,3),(3,4),(4,1)

v(t )W̃1(R("(t )))
(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j)=(3,1),(4,2)

v(t )W̃2(R("(t )))
(
σ

y
i σ z

j + σ z
i σ

y
j

)

+
∑

(i, j,k)∈all

v(t )Q̃(R("(t )))
(
σ x

i σ
y
j + σ

y
i σ x

j

)
· σ z

k .

(5.12)

Figures 5(b) and 6(b) show the time dependence of regu-
larization terms and of the wave function, respectively. The
wave function starts from the ground state with J = 0, i.e.,
Cj = 1

4 for j = 1, . . . , 16. In Fig. 6(b) the solution !FF(t )
of the TDSE (2.14) has exactly reproduced the time-rescaled
ground-state wave function.

C. Primary star graph

The eigenvalue of the ground state is E0 = −β, where β =√
2B2

x+5J2+2
√

B4
x+B2

xJ2+4J4. The components of the eigen-
vector of the ground state are C1 = C16 = V1ζ , C2 = C3 =
C5 = C12 = C13 = C15 = V2ζ , C4 = C14 = V4ζ , and C6 =
C7 = C8 = C9 = C10 = C11 = V6ζ , with ζ = (6 + 2V 2

1 +
6V 2

2 + 2V 2
4 )−1/2. Here V1 = −J (7B2

x+3J2 )+β(4B2
x+3βJ−β2+J2 )

5JB2
x

,
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We find for N = 4 spin clusters, that the 
geometry-dependent pairwise interactions again 
constitute a major part of the driving 
interaction, whereas the universal three-body 
interaction free from the geometry is necessary 
but plays a subsidiary role. 



Summary 

The fast forward (FF) of adiabatic dynamics of 
coupled spins can generate entangled states from the 
initial product state very quickly, leaving neither 
residual oscillations nor disturbances. 

Geometric symmetry reduces the complexity of the 
driving interactions. 

Broad range of choosing the driving  pair interactions 
and magnetic field will make flexible the 
experimental design of reproducing the adiabatic  
quantum spin dynamics or quantum computation in an 
extremely short time.


