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Network science

Networks are used for modelling broad variety of complex

systems:

From macromolecules to WWW, social, economic, political

and ecological systems.

Networks can be modelled in terms of metric graphs.

Graph is characterized by its topology, a connection rule for

graph bonds.
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Network science

How networks are attacked?

Statistical physics based approach

Statistical distributions of bonds and vertices and their 

dependence on graphs topology

Discrete, or tight binding approach:

Tight binding Hamiltonian on metric graphs

Continuum approach:

Evolution equations on metric graphs
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What is quantum Network?

No standard definition of quantum network.

Depends on the topic where network appears

Our definition:

Any branched structure (network) where the

particles/waves/phenomena are described in terms of

quantum mechanical wave equations
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Quantum Networks in Optics:

Microwave Networks

Wave transport in optical fibers is described by Helmholtz 

equation:

 2

2

2

k
dx

d

O . Hul et al Phys. Rev. E 69 056205 (2004)
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Quantum networks in condensed 

matter: Branched carbon nanotube

M. Terrones, F. Banhart, N. Grobert, J. C. Charlier, H. Terrones and P. M. 
Ajayan, Physical Review Letters 89, 75505, 2002.



Quantum networks in condensed 

matter: Majorana wire networks
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Quantum networks in condensed 

matter: Branched graphene 

nanoribbon
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Quantum networks in polymers:

Exciton dynamics 

in conducting polymers
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Quantum networks in quantum 

information



Quantum networks in quantum 

information



Quantum networks in quantum 

information



Quantum networks in quantum 

information:

Quantum communication and 

cryptography via branched channels

Alice

Charlie

Bob

John

Peter

Frank

Dolly

Quantum network
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Linear waves in networks: 

Quantum graph concept

Particle/wave dynamics in networks can be described 

in terms of Schrödinger equation on graphs. In this 

case the latter called quantum graph.
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Quantum networks

Quantum graphs

Schrödinger equation on metric graph

Quantum graph concept
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Quantum graph concept

The idea of investigating quantum particles confined to a graph 

was first suggested by L. Pauling and worked out by Ruedenberg

and Scherr in 1953 in a model of aromatic hydrocarbons

The concept extends, however, to graphs of arbitrary shape 

and what is important, it became practically important after

experimentalists learned in the last two decades to fabricate

tiny graph-like structure for which this is a good model

Hamiltonian: 

on graph edges,

boundary conditions at vertices
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Metric graphs

A graph with the bonds which can be assigned length,

𝒐 < 𝒍𝒃: < 𝑫

is called metric graph
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The topology of the graph, that is, the way the vertices

and bonds are connected is given in terms of the VV

connectivity matrix Ci,j (sometimes referred to as the

adjacency matrix) which is defined as:

Graphs and their topology
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(a) star graph (B = 10, V = 11),

(b) ring graph (B = 10, V = 10), 

(c) v-regular graph with v = 4 (B = 20, V = 10), 

(d) complete (or well-connected) graph (B = 45, V = 10), 

(e) tree graph (B = 19, V = 20).

Graphs and their topology
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Constructing quantum graphs 

from finite interval (wires)

Metric graph as a collection of interval glues to each other 

according to connectivity matrix
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Constructing quantum graphs 

from finite interval (wires)

Metric graph as a collection of interval glues to each other 

according to connectivity matrix
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𝑖
𝜕𝜓

𝜕𝑡
= 𝐻𝜓

where 𝐻 is the Shrödinger or Dirac operator
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Wave equation on graphs: Wave 

function

Wave function Ψ is a B-component vector
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Wave equation on graphs: 

Vertex Boundary conditions
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Differential operators on graphs

For given self-adjoint differential operator on graph 

D skew-Hermitian form can be constructed as  

( , ) , ,D D       

V.Kostrykin, R.Schrader, J. Phys. A. 32 595 (1999)
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V.Kostrykin, R.Schrader, J. Phys. A: Math. Gen. 32 (1999) 595–630. 

Boundary conditions

0)0()0(   BA

where A and B are two n×n matrices 
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What have been studied in the 

context of quantum graphs so 

far?

• Mathematical formulation of the problem, boundary conditions 

Exner (1988), Kostrykin Schrader (1999), Seba (2000)

• Quantum chaos in networks:

• Kottos, Smilansky (1999), Gaspard (2004, ) Gnutzmann (2006)

• Inverse problems

• Kurasov 2001, Smilansky (2004), Cheon (2010) 

• Casimir effect

• Kaplan (2005), Matrasulov (2006), Bellazini (2007)

• Quantum hall effect

• Gaspasrd (2008)

• Microwave networks (networks of optical fibers)

• Hull (2007)
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The Schrödinger equation on 

graphs: Wave function

For each bond b = (i, j) a coordinate xi,j which indicates the position along

the bond is assigned. The variable xi,j takes the value 0 at the vertex i and

the value Li,j ≡ Lj,i at the vertex j while xj,i is zero at j and Li,j at i. We have

thus defined the length matrix Li,j with matrix elements different from zero,

whenever Ci,j ≠0 and Li,j = Lj,i for b = 1, ...,B.

The wavefunction Ψ is a B−component vector and can be written as

where the set  B

iib
1

consists of B different bonds
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The Schrödinger equation on 

graphs: Boundary Conditions

The parameters λi are free parameters which determine the type of the 

boundary conditions.

The special case of zero λi’s, corresponds to Neumann boundary conditions. 

Dirichlet boundary conditions are introduced when all the λi = ∞.

The wave function must satisfy boundary conditions at the vertices, which ensure 

continuity (uniqueness) and current conservation. For every i = 1, … , V :

  ,0,

:

ixji x

Continuity






  jLxji

ji

x 
 ,

,
ji  0, jiC

   
ii

x

ji

ij

ji

Lx

ji

ij

ji
dx

xd
C

dx

xd
C

ji












0

,

,

,

,

,

For all             and

 Current conservation

QIS'2019,  September 10-18  

Samarkand,  Uzbekistan



The Schrödinger equation on 

graphs: Solutions

At any bond b = (i, j) the component b can be written in terms of its values on 

the vertices i and j as

The current conservation condition leads to

    ,sinsin
sin

1
,,

,

, jijjii

ji

ji CkxxLk
kL

  .ji 

 
  

 
   ,cos

sin

cos
sin

,

,

,

,

,

,

iijjii

ij ji

ji

jiij

ij ji

ji

kL
kL

kC

kL
kL

kC

















.i

QIS'2019,  September 10-18  

Samarkand,  Uzbekistan



where

The Schrödinger equation on 

graphs: Eigenvalues

Spectral equation

   0det , kh ji
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Quantum star graph

A graphs of the most simplest topology is so-called star-graph. It consist of

three or more bonds connected at the single vertex which can be called central

vertex. Other ones are called edge vertices. The eigenvalue problem for a star

graph with N bonds is given by the following Schrödinger equation:

We assign for each bond j a coordinate yj which indicates the position along the 

bond and takes the value 0 at the vertex V and the value lj at the edge vertex.

The boundary conditions for the star graph are

−𝑖
𝑑2

𝑑𝑥2
𝜙𝑗  𝑦 = 𝑘2𝜙𝑗  𝑦 , 𝑗 = 1, … , 𝑁. 

 
 
 

 
 
 𝜙1 𝑦=0 =  𝜙2 𝑦=0 = ⋯  = 𝜙𝑁 𝑦=0,            
 𝜙1 𝑦=𝑙1

=  𝜙2 𝑦=𝑙2
= ⋯  = 𝜙𝑁 𝑦=𝑙𝑁 = 0,

 
𝑑

𝑑𝑦
 𝜙𝑗  𝑦=0

= 0.                                        

𝑁

𝑗=1

  

J.P.Keating, Contemp. Math., 415, 191 (2006)
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Quantum star graph

The eigenvalues can be found by solving the following equation

where corresponding eigenfunctions are given as

with normalization coefficient

 cot 𝑘𝑙𝑗  = 0 

𝑁

𝑗=1

 

𝜙𝑗
 𝑛 

(𝑦) =
𝐵𝑛

sin 𝑘𝑛 𝑙𝑗
sin 𝑘𝑛 𝑙𝑗 − 𝑦  

𝐵𝑛 =
 

2

 
𝑙𝑗 − sin 2𝑘𝑛 𝑙𝑗

sin2 𝑘𝑛 𝑙𝑗
𝑗
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Quantum transport

𝐽𝑘 𝑥, 𝑡 =
1

2𝑖
 Ψ𝑘

∗ 𝑥, 𝑡 
𝑑Ψ𝑘

𝑑𝑥
− Ψ𝑘(𝑥, 𝑡)

𝑑Ψ𝑘
∗

𝑑𝑥
  

Ψ𝑘 𝑥, 𝑡 =  𝑒−𝑖𝐸𝑛 𝑡

𝑛

𝜓𝑘
 𝑛 
(𝑥) 

Probability current
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Quantum transport

  𝐽𝑘 𝑥, 0 , 𝐽𝑘(𝑥, 𝜏)  

=  𝑑𝑥 𝐽𝑘 𝑥, 0 𝐽𝑘 𝑥, 𝜏 − 𝐽𝑘 𝑥, 0 𝐽𝑘 𝑥, 𝜏  

𝐿𝑘

0

 

𝜎𝑘 𝑥 =
1

𝜔
 𝑑𝜏𝑒−𝑖𝜔𝜏  𝐽𝑘 𝑥, 0 , 𝐽𝑘(𝑥, 𝜏)  

∞

0

 

Conductivity
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PT-symmetric quantum mechanics

Since from the beginning of quantum physics people

believed that to have real energy spectrum Hamiltonian

operator should be Hermitian (self-adjoint). This fact was

considered as necessary and enough condition for the

realness of the spectrum. However such faith was broken in

1998 by Bender and Boettcher.
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PT-symmetric quantum mechanics

In 1998, Bender and Boettcher [Phys. Rev. Lett. 80 5243

(1998)] showed that quantum systems with a non-Hermitian

Hamiltonian can have a set of eigenstates with real

eigenvalues (a real spectrum).

In other words, they found that the Hermiticity of the

Hamiltonian is not a necessary condition for the realness of

its eigenvalues, and new quantum mechanics can be

constructed based on such Hamiltonians.
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Region of broken

PT symmetry

Region of unbroken

PT symmetry

PT phase

transition

C. Bender and S. Boettcher, PRL 80, 5243 (1998) 
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The PT-symmetry of the Hamiltonian means that it commutes with

the time reversal operator T and the parity operator P:

What is PT-symmetry?

𝑃 𝑇 𝐻 = 𝐻 𝑃 𝑇

𝑃 + ොr 𝑃 = −ොr

𝑃 + ොp 𝑃 = −ොp

𝑃 + መj 𝑃 = መj
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Properties of P and T-operators

Assuming that the wave function is scalar quantity, and that 𝑃 is 

linear unitary operator we have

𝑃𝜓 r, 𝑡 = 𝜓 −r, 𝑡

𝑃 + ොrොp 𝑃 = 𝑃 + ොr 𝑃 𝑃 + ොp 𝑃

𝑃 + ොr2ොp 𝑃 = 𝑃 + ොr 𝑃 𝑃 + ොr 𝑃 𝑃 + ොp 𝑃 ,     …………

𝑃 + 𝐻 ොp, ොr, 𝑡 𝑃 = 𝐻 𝑃 + ොp 𝑃 , 𝑃 + ොr 𝑃, 𝑡 = 𝐻 −ොp,−ොr, 𝑡,
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Properties of P and T-operators

𝑇𝜓 r, 𝑡 = 𝜓∗ r, −𝑡

𝑇+ 𝐻 ොp, ොr, 𝑡 𝑇 = 𝐻∗ 𝑇+ොp𝑇, 𝑇+ොr𝑇, 𝑡 = 𝐻∗ −ොp, ොr, 𝑡

𝑃+ 𝑇+ 𝐻 ොp, ොr, 𝑡 𝑃 𝑇 = 𝐻∗ 𝑃+ 𝑇+ොp 𝑃 𝑇, 𝑃+ 𝑇+ොr 𝑃 𝑇, 𝑡 = 𝐻∗ −ොp, ොr, 𝑡 =

= 𝐻∗ ොp,−ොr, −𝑡
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Examples of PT-symmetric 

systems

𝐻 = 𝑝2 + 𝑥2𝐾 𝑖𝑥 𝜖

ℒ =
1

2
𝜕𝜙 2 +

1

2
𝑚2𝜙2 + 𝑔𝜙2 𝑖𝜙 𝜖 𝜖 ≥ 0

ℒ =
1

2
𝜕𝜙 2

1

2
𝑖 ത𝜓𝜕𝜓 +

1

2
𝑆′ 𝜙 ത𝜓𝜓 +

1

2
𝑆 𝜙 2 =

=
1

2
𝜕𝜙 2 +

1

2
𝑖 ത𝜓𝜕𝜓 +

1

2
𝑔 1 + 𝜖 𝑖𝜙 𝜖 ത𝜓𝜓 −

1

2
𝑔2 𝑖𝜙 2+2𝜖
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PT-Symmetric inner product

𝑓, 𝑔 = න𝑑𝑥 𝑃𝑇𝑓 𝑥 𝑔 𝑥 

න𝑑𝑥𝑔 𝑥 𝑃𝑇𝐻𝑓 𝑥 = න𝑑𝑥𝐻𝑔 𝑥 𝑃𝑇𝑓 𝑥
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Introducing of PT-Symmetry 

in a quantum system

Similarly to that in Hermitian quantum

mechanics, PT-symmetry in a quantum system

can be introduced either via the boundary

conditions, or complex PT-symmetric

potential.
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Maxwell's equations reduce to the scalar Helmholtz equation

It formally coincides with the stationary Schrodinger  equation 

PT-symmetry in optics

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
+

𝜔

𝑐

2

𝜀 𝑥, 𝑧 𝐸 𝑥, 𝑧 = 0

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
𝜓𝑘 𝑥, 𝑧 −

2𝑚 𝑉 𝑥, 𝑧 − 𝐸𝑘

ℏ2
𝜓𝑘 𝑥, 𝑧 = 0
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Optical analog of the potential energy in quantum mechanics is the

permittivity in optics: PT-symmetry condition for the optical system is

defined as the condition imposed on the permittivity of the medium

PT-symmetry in optics

The stationary Schrödinger equation does not include the time dependence,

and therefore the time reversal operation 𝑇 is equivalent conjugation 𝐾.

Re 𝜀 𝜔, 𝑥, 𝑧 = Re 𝜔,−𝑥,−𝑧

Im 𝜀 𝜔, 𝑥, 𝑧 = − Im 𝜔,−𝑥,−𝑧
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Skew-Hermitian product on graph, which is defined for arbitrary 

differential operator, 𝐻 as

Ω 𝜓,𝜙 = 𝐻𝜓,𝜙 − 𝜓,𝐻𝜙

Ω 𝜓,𝜙 = − 

𝑗

𝑁

𝜙∗
𝑗
0

𝑑𝜓𝑗 0 

𝑑𝑥
− 𝜓𝑗 0 

𝑑𝜙∗
𝑗
0

𝑑𝑥
+

+ 

𝑗

𝑁

𝜙∗
𝑗
𝐿

𝑑𝜓𝑗 𝐿 

𝑑𝑥
− 𝜓𝑗 𝐿 

𝑑𝜙∗
𝑗
𝐿

𝑑𝑥
= 0

PT-symmetric quantum graph
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Boundary conditions I

Boundary conditions II

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019) 



𝑒𝑖𝑘𝐿1 1 − 𝑒2𝑖𝑘𝐿2 1 − 𝑒2𝑖𝑘𝐿3 + 𝑒𝑖𝑘𝐿2 1 − 𝑒2𝑖𝑘𝐿1 1 − 𝑒2𝑖𝑘𝐿3 +

+𝑒𝑖𝑘𝐿3 1 − 𝑒2𝑖𝑘𝐿1 1 − 𝑒2𝑖𝑘𝐿2 = 0

𝜓𝑗 𝑥, 𝑘𝑛 = 𝐵
sin 𝑘𝑛 𝐿𝑗 − 𝑥

sin 𝑘𝑛𝐿𝑗

PT-symmetric quantum graph

Secular equation for finding energy spectrum

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019) 
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PT-symmetric quantum graphs

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019) 
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Total current at the vertex (x = 0)

𝐽 0, 𝑡 = 𝐽1 0, 𝑡 + 𝐽2 0, 𝑡 + 𝐽3 0, 𝑡

𝐽𝑗 0, 𝑡 =
𝑖

2
𝜓𝑗 0, 𝑡 𝜕𝑥𝜓

∗
𝑗
0, 𝑡 − 𝜕𝑥𝜓𝑗 0, 𝑡 𝜓

∗
𝑗
0, 𝑡

𝜓𝑗 𝑥, 𝑡 =  

𝑛

𝐶𝑛𝑒
−𝑖𝑘2

𝑛
𝑡𝜙𝑗 𝑥, 𝑘𝑛 

Breaking of Kirchhoff rule

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019) 
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Breaking of Kirchhoff’s rule
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PT-symmetric quantum graphs

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019) 
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Experimental realization

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019) 
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Transparent quantum graphs:

Reflectionless wave propagation in  

quantum networks

Absence of backscattering at the graph vertices makes the 

graph transparent. Mathematically, such transparency can be 

provided by imposing so-called reflectionless boundary 

conditions at the graph vertex.
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M. Ehrhardt and A. Arnold, Discrete Transparent Boundary Conditions for the Schrödinger 

Equation, Rivista di Mathematica della Universita di Parma, Volume 6, Number 4 (2001), 57-108.

Transparent quantum networks: 
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Transparent boundary condition
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Transparent boundary conditions
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Transparent boundary conditions
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Transparent quantum networks: 
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Transparent quantum networks: 
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Transparent quantum networks
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J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).



𝜕

𝜕𝑥
Ψ1 =

𝛼1

𝛼2

𝜕

𝜕𝑥
Ψ2 +

𝛼1

𝛼3

𝜕

𝜕𝑥
Ψ3

= −
+
−2𝑖𝑠𝛼1

2
1

𝛼2
2 +

1

𝛼3
2

𝜕

𝜕𝑥
Ψ1 𝑥 = 0, 𝑡 = 𝐴1

2

𝜋
𝑒−𝑖

𝜋
4

𝑑

𝑑𝑡
න

0

𝑡
 Ψ1 0, 𝜏

𝑡 − 𝜏
𝜏

where  𝐴1 = 𝛼1
2 𝛼2

−2 + 𝛼3
−2 .

The Laplace transformed current conservation (at x = 0) takes the 

form

Using the inverse transform we have

Transparent quantum networks

J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).
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𝛼1
2 =

1

𝛼2
2 +

1

𝛼3
2 .

Transparent quantum networks

Condition for transparency the continuity and current conservation:

J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).



Summary

Basic theory for particle and wave dynamics in quantum 

networks is presented.
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Relativistic quantum graphs with Dirac and Majorana
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Transparent quantum graphs: Reflectionless transmission of 
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