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Network science

Networks are used for modelling broad variety of complex

systems:
From macromolecules to WWW, social, economic, political

and ecological systems.

Networks can be modelled in terms of metric graphs.

Graph is characterized by its topology, a connection rule for
graph bonds.
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Network science

How networks are attacked?

Statistical physics based approach
Statistical distributions of bonds and vertices and their
dependence on graphs topology

Discrete, or tight binding approach:
Tight binding Hamiltonian on metric graphs

Continuum approach:
Evolution equations on metric graphs
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What is quantum Network?

No standard definition of quantum network.
Depends on the topic where network appears

Our definition:

Any  Dbranched  structure  (network) where the
particles/waves/phenomena are described in terms of
guantum mechanical wave equations
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Quantum Networks in Optics:
Microwave Networks

Wave transport in optical fibers is described by Helmholtz
equation: )

O . Hul et al Phys. Rev. E 69 056205 (2004)
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Quantum networks in condensed
matter: Branched carbon nanotube

M. Terrones, F. Banhart, N. Grobert, J. C. Charlier, H. Terrones and P. M.
Ajayan, Physical Review Letters 89, 75505, 2002.



Quantum networks in condensed
matter: Majorana wire networks
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Quantum networks in condensed
matter: Branched graphene
nanoribbon
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Quantum networks in polymers:
Exciton dynamics
in conducting polymers

S 7 B

Block copolymer Star polymer Comb polymer Brush polymer
AB, star Palm-tree AB, H-shaped B,AB, Dumbbell (pom-pom)
Ring block Star block AB, Coil-cycle-coll Star A, B,
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Quantum networks in quantum
information
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and DOL hierarchical manner comprising several layers, similar to the classical network stack, and identify
m quantum networking devices operating on each of these layers. The layers responsibilities range from
3 establishing point-to- point connectivity, over intra-network graph state generation, to inter-network

routing of entanglement. In addition we propose several protocols operating on these layers. In
particular, we extend the existing intra-network protocols for generating arbitrary graph states to ensure
reliability inside a quantum network, where here reliability refers to the capability to compensate for
devices failures. Furthermore, we propose a routing protocol for quantum routers which enables the
generation of arbitrary graph states across network boundaries. This protocol, in correspondence with
dassical routing protocols, can compensate dynamically for failures of routers, or even complete
networks, by simply re-routing the given entanglement over alternative paths. We also consider how to
connect quantum routers in a hierarchical manner to reduce complexity, as well as reliability issues
arising in connecting these quantum networking devices.




Quantum networks in quantum

information

The quantum internet

H. 1. Kimble'

Quantum networks provide opportunities and challenges across arange of intellectual and technical
frontier s, including quantum computation, communic ation and metrology. The realization of quantum
networks composed of many nod es and channeks requires new sclentific capabilities for generating and
characterizing quantum coherence and entanglement. Fund amental to this endeavour are quantum
interconnects, which convert quantum states from one physical system tothose of another in areversible
manner. Such quantum connectivity in networks can be achieved by the optical interactions of single
phatons and atoms, allowing the distribution of entanglement across the network and the teleportation

of quantum states between nodes.

In the past two decades, 2 broad range of fundamenta] discoweries have
bieen made in the fleld of quantum information sclence, from 2 quantum
algorithm that places public-key aryplography at risk to 2 protoco] for
tha teleportation of quantum states’. This union of quantzm mechan-
ics and Information sclence has allowsd great advances in the undar-
standing of the quantum world and In the ability to contral coherently
individis] quantism systems”. Unique ways in which quantum systems
procass and distribute Information have been ldentifled, and powerdul
new perspectives for understanding the complexsty and subtleties of
quantum dynamical phenomena have eme

In the broad context of quantum informatlon science, quantum
netwarks have an Impaortant role, both for the formal anatysts and the
physiczl implementation of quantum computing. communication
and metrology” *. A notlonal quantum network basad on proposaks In
refs 4, 6 1s shown In Fig. 1a. Quantum information 1s generated, pro-
cessed and stored locally In quantum nodes. Thess nodes are Iinked
by quantum channels, which transport quantum states from site to
sitewith high fidelity and distribute entanglement across the entire
network. As an extension of this sdea, a ‘quantum internet’ can be envis-
aged; with only moderate processing czpabalities, such zn internst could
accomplish tasks that are Impossible In the realm of classical physics,
incleding the distribustion of ‘quantum software™.

Apart from the advantages that might be gained from 2 particular
algorithm, there is an Important advantage In uslng guantum connec-
tivity, as oppasad to classlcal connectivity, between nodes. A network.
of quantum nodes that 1s linked by classical channels and comprises &
nodes each with g quantum bifs { qublis) has a state space of dimension
k2", whereas a fully quantum network has an exponentially Larger state
space, 7™ Quantum connectivity also provides a potenttally powerful
means to overcome skze-scaling and error-correlation problems that
would Hmit the size of machines for quanium processing”. Atany siage
in the development of quantum technologes, there will be a largest slae
attalnable for the state space of individual quantum processing untts,
and it will be possible to surpass this stre by Hnking such unfis together
into 2 fully quantum network.

A different perspective of 2 quantum network s to view the nodes
as companents of 3 physical system that interact by way of the guan-
tum channels. In this case, the underlying physical processes wsed
fior quantum network protocols are adapted to smulate the evolution of
quantum many-body systems®. For example, stoms that are locallzed
at separate nodes can have effactive spin-spin interactions catzlysad by

single-photon pulses that travel slong the channels between the nodes™.
This ‘quantum wirtng’ of the netwark allows 2 wide range for the effec-
tive hamiltionian and for the topalogy of the resultant Tatilcs Moreover,
from this perspective, the extension of entanglement across quantam
networks can be relatad to the classica] problem of percolztion”’.

These exciting opportunities provide the mottvation to examine
research related to the physical processes for translating the abstract
\lustration In Fig. 1a info rezlity. Such conslderatlons are timely becaise
sclantific capahbilities are now passing the threshold from a learning phase
with Individual systems and advancing into 2 domaln of rudimentary
functiomaltty fior guantum nodes connected by quantum chanmels.

In this review, I convey some baslc princtples for the physlcal imp-
lementation of guantum networks, with the 2im of stimulzting the
Involvemnent of a larger community In this endezvour, Including In
systems-level studles. 1 focus on current efforts to harness optical pro-
cesses 2t the level of single photons and atoms for the transportation of
quantum states rellzbly across complex quantum networks.

Two Impartant research areas are strong coupling of single photons
and atoms In the setting of cavity quantum electrodynamics (QED) and
gquantum Information processing with atomic ensembles”, for whach
cructal elements are long-Hved quantum memarles provided by the
atomlc system and efficient, quantum interfaces between Hght and
matter. Mamy other physical systems are also balng Investigatad and are
discussed elsewhere (ref. 2 and websites for the Quantum Compsta-
tion Roadmap (hitpeifqistlanl goviqoomp_map.shtmi), the SCALA Int-
egrated Project (httpewww scala-ipoong/pubiic) and Qubit Applications
(huttpewrwre quibitpplications. comi).

A quantum interface between light and matter

The maln scienttfic challenge in the quest to distribate quantium states
across 3 quantum network 1s to attain coberent control over the inter-
actions of light and matter at the single-photon level. In contrast to
atoms and electrons, which have relatively Large long-range Interac-
toms for thelr spin and charge degress of fresdom, individus] photons
typlcally have Interactlon cross-sections that are orders of magnitude
too small for non-trivial dynamics when coupled to single dagress of
fresdom forz material system.

The optical physics community began to address this lsse tn the
19905, with the development of thecretical protocols for the coherent
transfer of guantum states between atoms and photons in the setting of
cavity QED™ . Other important advances have been made in the past
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ABSTRACT
As claszical information technelogy approaches lmits of size and
fimctionality, mcunmﬁsm:ea:dnn_ﬂn:en paradizms for
the déstribution and processing of information. Chr goal in this
Introduction is to provide a broad view of the begionng of a new
era in information teckmelogy. an e of quantm information.
where previously undenmtilized quansom effects such as quantom
superpasition and entanglement, are enmloyed as resources for
information sncoding and processing. The ability o distribute
these new rsources and connect distant quantum systems will be
critical ‘We present an overview of network ivplicadons for
guanfum commmmication applications, and for guantmm
computing. This overview is a selection of several Thistrative
examples, to serve as motivation for the metwork research
commmmity to bring itz expertize to the development of quantum
information techmoloies.

1. INTRODUCTION

The past cenfury has been influenced tremendously by both
quanfum mechanics and information technology.  Quannum
efficts are pervasive in techmolozy, centmal to fanctisning of marny
uhiquitons devices today, such as lasers, imtegrated circuts.
fluorescent lights, and magmetic resonamce mmaging (MEI)
machines, to mame a few. Following the development of
APFPANET under DARPA’s sponsorship m the “$0s, we have
witnessed an explosive growth of information technalogy.
Inesprated cirowits and the intermet have chameed our lives. If the
last cennmy was the era of quanhm mechamics and mformation
technelogy, the 21% century will be an em of quanfum

ACM SIGCOMM Computer Communicaiions Review

information, whers previously undentilired quanbom effects, such
a5 quanhm superposition and emfanglement, will be essential
resources for informarion encoding and processine. The ability to
dismibute these new resources and comnect distant guannim
svstems will be autical. In this paper we present a brief overview
af network implirations for quantum commmication applications,
such as cryptography, and for quantum computing. This overview
is pot meant #o be exhaustive. Rather, it is a selection of several
illustrative examples, fo serve a: motivation for the petwork
research commmmdty to bring its expertise to the development of
quantum information techralogies

1. QUANTUM COMMUNICATION

1.1 Quantum Cryptography

}-m& quanmum systems that manipulate. stare and transmit
information. based on laws of quanhm mechamics are now bemg
explored m mamy physical systems at the level of individual
atoms, photons, and electrons. Quanmm effects sach as
entnglement and superposition of quantom states, the no-cloning
theorem, non-locality principles, etc are exploited in quanhm
cryptography, quaniim  communicarion, and guantum
computation. The most manms of all quantum information
technologies, quanfum crypeography [11], takes advantaze of the
no-cloning property [30] of quantum states to implement
mhreakahe secure crypeosystems

To ensume that commmunications are secure, two partiss =
sensitive information over an insscare commmmicaton charmsl
st use 3 aypiesaphic profocol. The sendine party has tonse a
cryplographic key to encods the information {encryption) and the
receiving party has to use a key to decods the information
{decryption). If a third party acquires the decoding key, he'she
will be able to decode the miormation. There are two distinct
ways to distriute the keys — privmte and public. In privare, or
nymmetrical, key cryptosystems the parties hawe to share a secret
key befors they send and receive a message If the key is the
same length as the message, randomly genemted every tme, and
is used only once, that crypographic alzorithm is called the one-
rime pad or Farnam cipher, the only existing provably secure
aryptosystem at this tme. Modem public or axymme Ley

crypeographic systems are based on two Jr.'lnc_h.l.n_ keys —a “unLc

Volume 34, Number 5: October 2004

quantum



Quantum networks in quantum
information:
Quantum communication and
cryptography via branched channels

Quantum network

John
Bob

Alice Peter

Frank

Charlie
Dolly
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Linear waves in networks:
Quantum graph concept

Particle/wave dynamics in networks can be described
in terms of Schrodinger equation on graphs. In this
case the latter called quantum graph.
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Quantum graph concept

Quantum networks

U

Quantum graphs

i

Schrodinger equation on metric graph
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Quantum graph concept

The idea of investigating quantum particles confined to a graph
was first suggested by L. Pauling and worked out by Ruedenberg
and Scherr in 1953 in a model of aromatic hydrocarbons

The concept extends, however, to graphs of arbitrary shape

2

Hamiltonian: —5—2+V(Xj)
OX
on graph edges, :

boundary conditions at vertices

and what Is important, it became practically important after
experimentalists learned in the last two decades to fabricate
tiny graph-like structure for which this is a good model
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Metric graphs

A graph with the bonds which can be assigned length,
o< lb: <D

Is called metric graph
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Graphs and their topology

The topology of the graph, that is, the way the vertices
and bonds are connected is given in terms of the VxV
connectivity matrix C;; (sometimes referred to as the

adjacency matrix) which is defined as:

1 if 7,7 are connected

Cij = Chi = { 0 otherwise } y bi=1 V.
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Graphs and their topology

(a) star graph (B = 10, V = 11),

(b) ring graph (B = 10, V = 10),

(c) v-regular graph withv=4 (B = 20, V = 10),

(d) complete (or well-connected) graph (B = 45, V = 10),
(e) tree graph (B =19, V = 20).
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Constructing quantum graphs
from finite interval (wires)

Metric graph as a collection of interval glues to each other
according to connectivity matrix

!
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Constructing quantum graphs
from finite interval (wires)

Metric graph as a collection of interval glues to each other
according to connectivity matrix
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Evolution equation on graphs

where H is the Shrodinger or Dirac operator
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Wave equation on graphs: Wave
function

Wave function ¥ 1s a B-component vector

(qul (xbl)" b, (xbz )’ s P (be))T
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Wave equation on graphs:
Vertex Boundary conditions
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Differential operators on graphs

For given self-adjoint differential operator on graph
D skew-Hermitian form can be constructed as

Q(p,¢) =(De,¢)— (@, Dg)

V.Kostrykin, R.Schrader, J. Phys. A. 32 595 (1999)
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Boundary conditions

Ay (0)+By'(0)=0

where A and B are two nXn matrices

V.Kostrykin, R.Schrader, J. Phys. A: Math. Gen. 32 (1999) 595-630.
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What have been studied in the
context of quantum graphs so
far?

« Mathematical formulation of the problem, boundary conditions
Exner (1988), Kostrykin Schrader (1999), Seba (2000)

« Quantum chaos in networks:

« Kottos, Smilansky (1999), Gaspard (2004, ) Gnutzmann (2006)
* Inverse problems

« Kaurasov 2001, Smilansky (2004), Cheon (2010)

« Casimir effect

« Kaplan (2005), Matrasulov (2006), Bellazini (2007)

« Quantum hall effect

« (Gaspasrd (2008)

« Microwave networks (networks of optical fibers)

« Hull (2007)
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The Schrodinger equation on
graphs: Wave function

For each bond b = (i, ) a coordinate x;; which indicates the position along
the bond is assigned. The variable x;; takes the value O at the vertex | and
the value L;; = L;; at the vertex ] while x;; is zero at | and L;; at i. We have
thus defined the length matrix L;; with matrix elements different from zero,

whenever C;; #0 and L;; = L;; forb =1, ...,B.

The wavefunction ¥ is a B-component vector and can be written as

T
(W, (2, ), Yoo (Tps)y ooy Vi (1))
B _ .
where the set {bi }H consists of B different bonds
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The Schrodinger equation on
graphs: Boundary Conditions

The wave function must satisfy boundary conditions at the vertices, which ensure
continuity (uniqueness) and current conservation. Foreveryi=1, ..., V:

e Continuity:

¥ (),

e Current conservation
Y
yo, )y 0

< x=L, | J>1 x=0

Lz LPi,j(X)(X ] = Q; Forall 1< ] and Ci’j;éO

=L ;

The parameters A, are free parameters which determine the type of the
boundary conditions.

The special case of zero A’s, corresponds to Neumann boundary conditions.
Dirichlet boundary conditions are introduced when all the A, = «.
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The Schrodinger equation on
graphs: Solutions

At any bond b = (i, j) the component b can be written in terms of its values on
the vertices i and | as

¥, :ﬁ(ﬂ sinlk(L; , —x)]+ ¢, sinkx)C, , 1 < J.

The current conservation condition leads to

— 2>

J<, S|n(kl_I
+Zsm(k|_, )( », cos(kL, ; )+ ;)= Ao,

j=i

)( »; + o, cos(kL, ;)
VI,
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The Schrodinger equation on
graphs: Eigenvalues

Spectral equation

det(hi,j(k))zo

where

(—ZCi,m cot(kLi,m)—%, i= j

h | =+ m=i

L C, (sin(kL ;)™ I # .
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Quantum star graph

A graphs of the most simplest topology is so-called star-graph. It consist of
three or more bonds connected at the single vertex which can be called central
vertex. Other ones are called edge vertices. The eigenvalue problem for a star
graph with N bonds is given by the following Schrodinger equation:

d? |
—lo ) =k, j=1.N.

We assign for each bond | a coordinate yj which indicates the position along the
bond and takes the value 0 at the vertex V and the value Ij at the edge vertex.

The boundary conditions for the star graph are . N-1 N
(D1ly=0 = P2ly=0 = == duly=o,
¢1|_’y=l1 = ¢2|y=l2 == ¢N|y=lN = 0; :
N 1
d | _ o
dy Pilyzy =0

\j=1

J.P.Keating, Contemp. Math., 415, 191 (2006)
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Quantum star graph

The eigenvalues can be found by solving the following equation

N

z cot(klj) =0

j=1

where corresponding eigenfunctions are given as

B
M)y — :
qun (y) = = I:nl] sin kn(l] —y)

with normalization coefficient

2
.lj—sinanlj
\ J sinzknlj

B, =

QIS'2019, September 10-18
Samarkand, Uzbekistan



Quantum transport

Probability current

*

]k(x t) — . [ka(x t)l—q—’k(x t)dl

W, t) = ) e )

n
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Quantum transport

Conductivity
1 [ —iwT
700 = | dre @ ([ (e, 00, G, D))
0
([]k (X, O))]k (X, T)])
Ly

_ f dx[Jj, (x, 0], (x, T) — Jio (x, 0)J . (x, )]

0

QIS'2019, September 10-18
Samarkand, Uzbekistan



PT-symmetric quantum mechanics

Since from the beginning of quantum physics people
believed that to have real energy spectrum Hamiltonian
operator should be Hermitian (self-adjoint). This fact was
considered as necessary and enough condition for the
realness of the spectrum. However such faith was broken in
1998 by Bender and Boettcher.
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PT-symmetric quantum mechanics

In 1998, Bender and Boettcher [Phys. Rev. Lett. 80 5243
(1998)] showed that guantum systems with a non-Hermitian
Hamiltonian can have a set of eigenstates with real
eigenvalues (a real spectrum).

In other words, they found that the Hermiticity of the
Hamiltonian is not a necessary condition for the realness of
Its eigenvalues, and new quantum mechanics can be
constructed based on such Hamiltonians.
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H=p* + J:?{';i;r:]‘:' (¢ Teal)

19t

-1 & 0 l Z 3
Region of broken PT phase Region of unbroken

PT Symmetry transition PT Symmetry
C. Bender and S. Boettcher, PRL 80, 5243 (1998)
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What is PT-symmetry?

The PT-symmetry of the Hamiltonian means that it commutes with
the time reversal operator T and the parity operator P:

P+¢tP =-¢
P+pP=—-p
P+ijP =j
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Properties of P and T-operators

Assuming that the wave function is scalar quantity, and that P is
linear unitary operator we have

ﬁl/)(r, t) — 1/)(—1", t)

P +tpP = (P +¢P)(P + pP)
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Properties of P and T-operators

TY(r,t) = ¢*(r,—t)

= H* (p,—T, —t)
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Examples of PT-symmetric
systems

H = p? + x?K(ix)¢

L=2 09 +5mPpt + gp29)* (€2 0)

L= 200 S ipoy + 25" ()P + =[S =
=~ O9)? 5 o + 5 S (@) + 5 [SP)] =

1 5 1 - 1 . - 1 20 1\2+2
=5 (09)* + i +5g(1 + e)iP) Py — 5 g*(ip)***
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PT-Symmetric inner product

(f,9) = f dx[PTf(0)]g(x)

f dxg () [PTHf (x)] = f dxHg () [PTf ()]
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Introducing of PT-Symmetry
in a quantum system

Similarly to that In Hermitian quantum
mechanics, PT-symmetry in a guantum system
can be iIntroduced either via the boundary
conditions, or complex PT-symmetric
potential.
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PT-symmetry in optics

Maxwell's equations reduce to the scalar Helmholtz equation

dx2 0z2 C

(a_z + 6—2 + (2)2 e(x, z)) E(x,z) =0

It formally coincides with the stationary Schrodinger equation

ax oz |V 2 Vi, z) =0

0% 0% 2m(V (x,z) — Ex)
( > k(x; Z) T
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PT-symmetry in optics

Optical analog of the potential energy in quantum mechanics is the
permittivity in optics: PT-symmetry condition for the optical system is
defined as the condition imposed on the permittivity of the medium

Re e(w,x,z) = Re (w,—x,—2)
Ims(w,x,z) = —Im (w, —x,—2)

The stationary Schrodinger equation does not include the time dependence,
and therefore the time reversal operation T is equivalent conjugation K.

QIS'2019, September 10-18
Samarkand, Uzbekistan



LETTERS

PUBLISHED ONLINE: 24 JANUARY 2010 | DOI: 10.1038/NPHY51515

nature

physics

Observation of parity-time symmetry in optics

Christian E. Riiter', Konstantinos G. Makris?, Ramy ElI-Ganainy?, Demetrios N. Christodoulides?,

Mordechai Segev? and Detlef Kip'™*

One of the fundamental axioms of guantum mechanics is
associated with the Hermiticity of physical observables'. In
the case of the Hamiltonian operator, this requirement not
only implies real eigenenergies but also guarantees probability
conservation. Interestingly, a wide class of non-Hermitian
Hamiltonians can still show entirely real spectra. Among these
are Hamiltonians respecting parity-time (PT) symmetry®’,
Even though the Hermiticity of quantum observables was never
in doubt, such concepts have motivated discussions on several
fronts in physics, including quantum field theories®, non-
Hermitian Anderson models® and open quantum systems'®",
to mention a few. Although the impact of PT symmetry in
these fields is still debated, it has been recently realized that
optics can provide a fertile ground where PT+elated notions
can be implemented and experimentally investigated™-'5, In
this letter we report the first observation of the behaviour
of a PT optical coupled system that judiciously involves a
complex index potential. We observe both spontaneocus PT
symmetry breaking and power oscillations vielating left-right
symmetry. Our results may pave the way towards a new
class of PT-synthetic materials with intriguing and unexpected
properties that rely on non-reciprocal light propagation and
tailored transverse energy flow.

192

(e = £), the spectrum ceases to be real and starts to involve
imaginary eigenvalues. This signifies the onset of a spontaneous PT
symmetry-breaking, that is, a ‘phase transition’ from the exact to
broken-PT phase™",

In optics, several physical processes are known to obey equations
that are formally equivalent to that of Schrédinger in quantum
mechanics. Spatial diffraction and temporal dispersion are perhaps
the most prominent examples. In this work we focus our attention
on the spatial domain, for example optical beam propagation
in PT-symmetric complex potentials. In fact, such PT ‘optical
potentials’ can be realized through a judicious inclusion of
index guiding and gain/loss regions™'*~'*, Given that the complex
refractive-index distribution n(x) = ng(x)+ in;(x) plays the role of
an optical potential, we can then design a PT-symmetric system by
satisfying the conditions np(x) = np(—x) and ny(x) = —n(—=x).

In other words, the refractive-index profile must be an even
function of position x whereas the gain/loss distribution should be
odd. Under these conditions, the electric-field envelope E of the
optical beam is governed by the paraxial equation of diffraction'*:

dE 1 #’E
f— 4+ —— Lk lnplx)+inx)|E=0
e Ek ng | LR I .']

MNATURE PHYSICS | WVOL 6 | MARCH 2010 | www.naturecom/naturephyeice

& 2010 Macmillan Publishers Limited. All rights reserved.



PT-symmetric quantum graph

Skew-Hermitian product on graph, which is defined for arbitrary
differential operator, H as

.Q(l,b, ¢) — (Hl:b' (p) _ (l/)' H¢>

N *
dy; (0 d¢” .(0)
n<¢,¢>=—Z[¢*j<o> B2 0 — ]+

=0

1/;]( ) d¢* j(L)]
+Z[¢ ()= (1) —

X
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Boundary conditions |

1(0) = ¢2(0) = ¥5(0),

O, O, D3 —0
Ox | —p, X | —p, Ox |, —p,

V(L) =0,j=1,2,3.

Boundary conditions Il

O O IRATE

ox | _,  Ox —0  Ox —0
i(Ly) + (L) + ¥3(Ls) = 0,
o,

f— — 07 j — 1') 29 3

ox |y,

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019)



PT-symmetric quantum graph
Secular equation for finding energy spectrum
eikLl(l _ eZikLz) (1 _ eZikLg) 1 eikLz(l _ eZikLl) (1 _ eZikLg)_l_

+€ikl’3(1 _ eZikLl) (1 _ eZikLz) =0

sin kn(Lj — x)
sin ky Lj

lljj(x, kn) =B

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019)
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PT-symmetric quantum graphs

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019)
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Breaking of Kirchhoff rule
Total current at the vertex (x = 0)

](0, t) :]1((): t) +]2(0, t) +]3(01 t)

Pyt = ) Cue ™™ty k)

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019)
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Breaking of Kirchhoff’s rule

rent
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PT-symmetric quantum graphs
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D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019)
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Experimental realization

Absorbing

optical material
Linear

optical fiber

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019)
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Transparent quantum graphs:
Reflectionless wave propagation in

quantum networks

Absence of backscattering at the graph vertices makes the
graph transparent. Mathematically, such transparency can be

provided by imposing so-called reflectionless boundary
conditions at the graph vertex.
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Transparent quantum networks:

Yy A |
left exterior problem interior problem |
I
(explicitly solvable) | right
I
VY (X,1) i exterior
output: v _(0,t) — i problem
I
|
I
wI |
I
I -~ .
0 L

FiGureE 1. Schrodinger equation: Construction idea for transparent
boundary conditions

M. Ehrhardt and A. Arnold, Discrete Transparent Boundary Conditions for the Schrodinger
Equation, Rivista di Mathematica della Universita di Parma, Volume 6, Number 4 (2001), 57-108.
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Transparent boundary condition

Interior problem:

0, ¥ =—202¥+V(xOY, 0<x<Lt>0
Y(x,0) =¥ (x)

0,¥(0,t) = (Tp¥)(0,1)

O W(L, t) = (T,¥)(L, 1)

Ty 1, denote the Dirichlet-to-Neumann maps at the boundaries.
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Transparent boundary conditions

Ty 1, are obtained by solving the two exterior problems:

[0;V = —%63v+ Viv, x>L t>0

v(x,0)=0

v(L,t) = d(t), t >0,
®0)=0

v(oo,t) =0,

(T @) (t) = 0xv(L, 1),

and analogously for T.
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Transparent boundary conditions

An inverse Laplace transformation yields the right TBC at Sx = LS:

t .
AWl < L&) = 2 _% -ithd[lp(L’T)ew”d
P =Lt) = 7I.e e T — T
0 '

Similarly, the left TBCat x = 0 is obtained as

t
(= 0.0 \F md (YD)
v x =0, = — |—e — T.
T dt ) /t —
o t—1
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Transparent quantum networks:

Time-dependent Schrodinger equation for star graph with 3 bonds (in units A =
m=1)

1
0¥y = =2 03W,,  b=123

The coordinates assigned to bond B isx € (—,0) and B_(1,2) arex € (0, o).

B?

BI
BS

QIS'2019, September 10-18
Samarkand, Uzbekistan



Transparent quantum networks:

Interior problem for SB_185:
i0,¥) = —>02 W, x<0,t>0
¥, (x,0) = P/ (x)

0x¥1(0,t) = (T, ¥1)(0,t)

QIS'2019, September 10-18
Samarkand, Uzbekistan



Transparent guantum networks

Exterior problems for SB_{2,3}S:
i0;Wy3=—502W,3 x>0, t>0
¥3(x,0) =0

¥3(0,8) = Pp5(t), t>0, Py3(0)=0

(T4 Py 3)(t) = 0¥, 3(0,0)

J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).
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Transparent quantum networks

The Laplace transformed current conservation (at x = 0) takes the
form

0(p _ala(p +ala(p
0x ' a,0x *  azdx °
1 1
:—ma5<—2+—2>
a;  as

Using the inverse transform we have

t
9, W — 0 =4 2 —i%d lpl(O,T)
ax 1(x— ) )— 1 T[e dt m'l’
0

where A; = a?(a;? + az?).

J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).



Transparent quantum networks

Continuity condition:
a,'¥1(0,t) = ay¥,(0,t) = a3'¥3(0,t)

Current conservation condition:
1 1 1
—0,¥Y1(x=0,t) =—0,¥(x=0,t) +—09,¥Y3;(x =0,t)
aq a; as

Condition for transparency the continuity and current conservation:

1_1 1
af af af

J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).



Summary

Basic theory for particle and wave dynamics in quantum
networks iIs presented.

Theory of PT-symmetric graphs:
Breaking Hermitticity in quantum graphs
Experimental realization in microwave fibers

Relativistic quantum graphs with Dirac and Majorana
fermions

Transparent quantum graphs: Reflectionless transmission of
waves through the vertices.
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Outlook

Quantum teleportation on networks
Entangled quantum networks
Qubits In networks

Relativistic guantum graphs: Dirac and Majorana fermions
In networks

Transparent microwave networks
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