Entanglement and Reference frames Lecture I

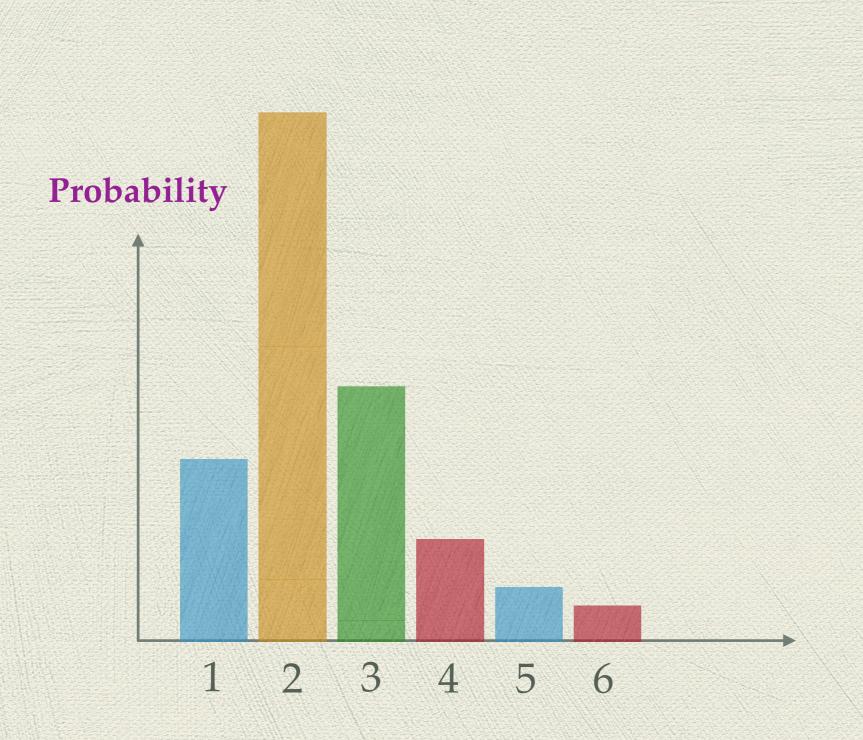
Vahid Karimipour, Sharif University of Technology, Tehran, Iran.

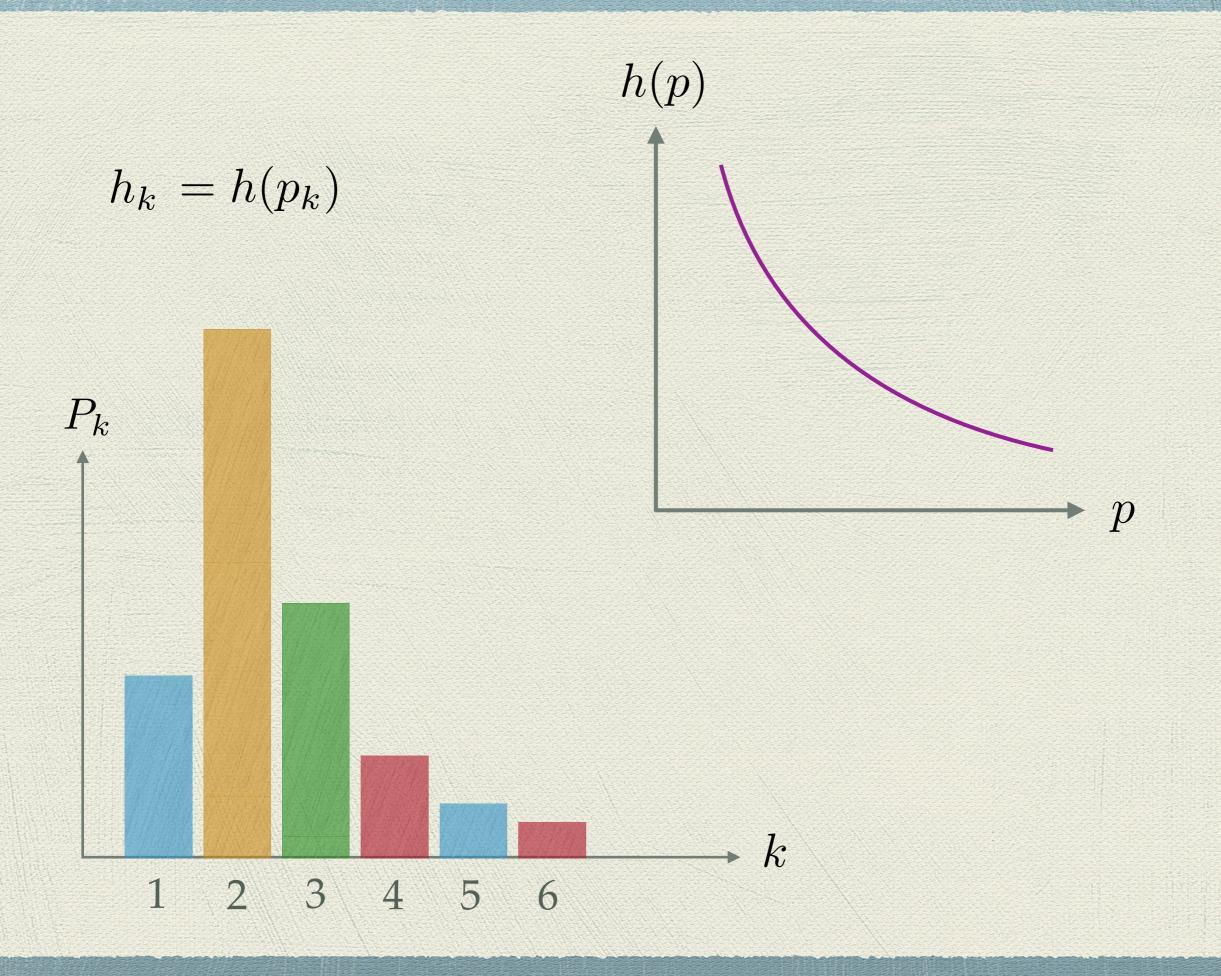
New Advances in Quantum Information Science and Quantum Technology

September 10-18, 2019 Samarkand, Uzbekistan,

0-Elementary Concepts

The element of surprise





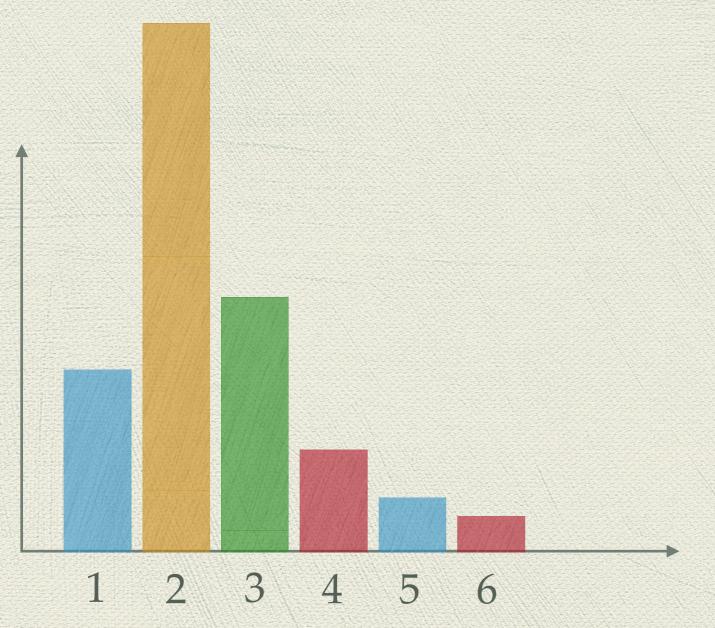
$$h(pq) = h(p) + h(q)$$

$$h(p) = -a\log p$$

$$h(1/2) = 1$$

$$h(p) = -\log_2(p)$$

$$H = -\sum_{k} p_k \log(p_k)$$



Shannon Entropy

Shannon Information

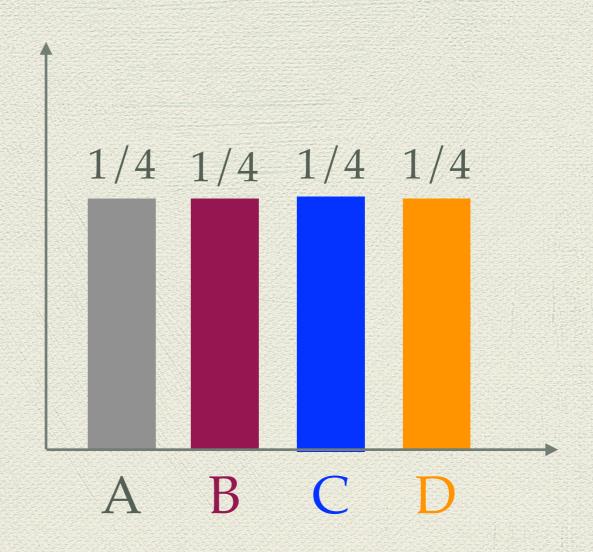
Is information physical?

 \mathbf{A} 00

B 01

C 10

D 11



$$H = -\sum_{1}^{1} \frac{1}{4} \log \frac{1}{4} = 2$$

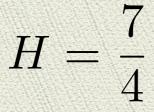
2 bits per letter

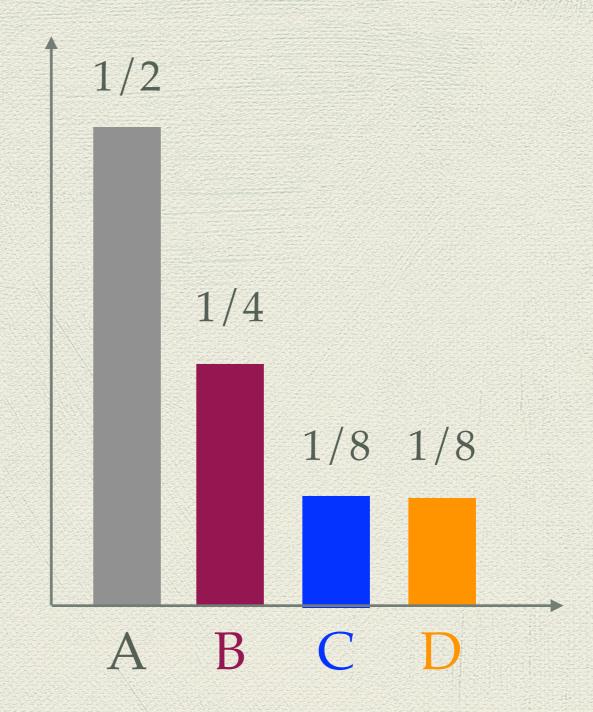
 \mathbf{A}

B 10

C 110

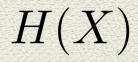
D 111

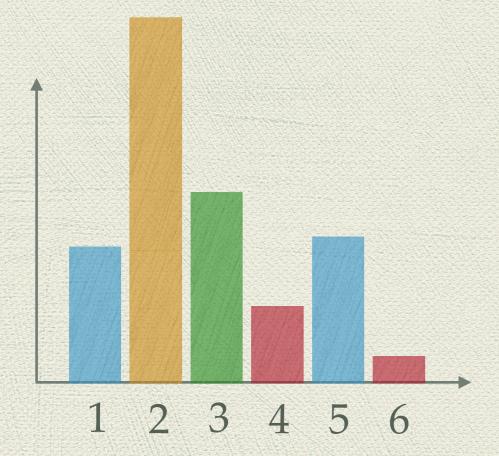




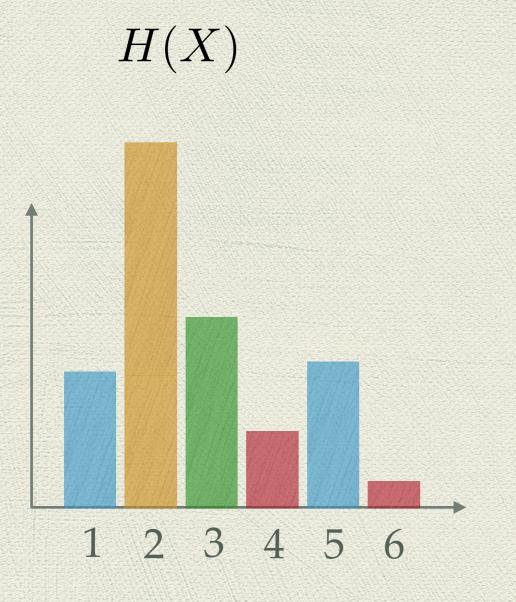
7/4 bits per letter

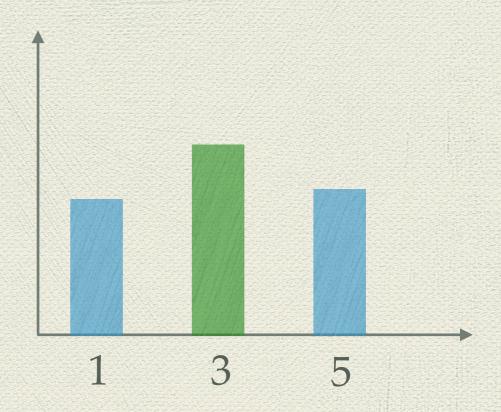
Information Gain



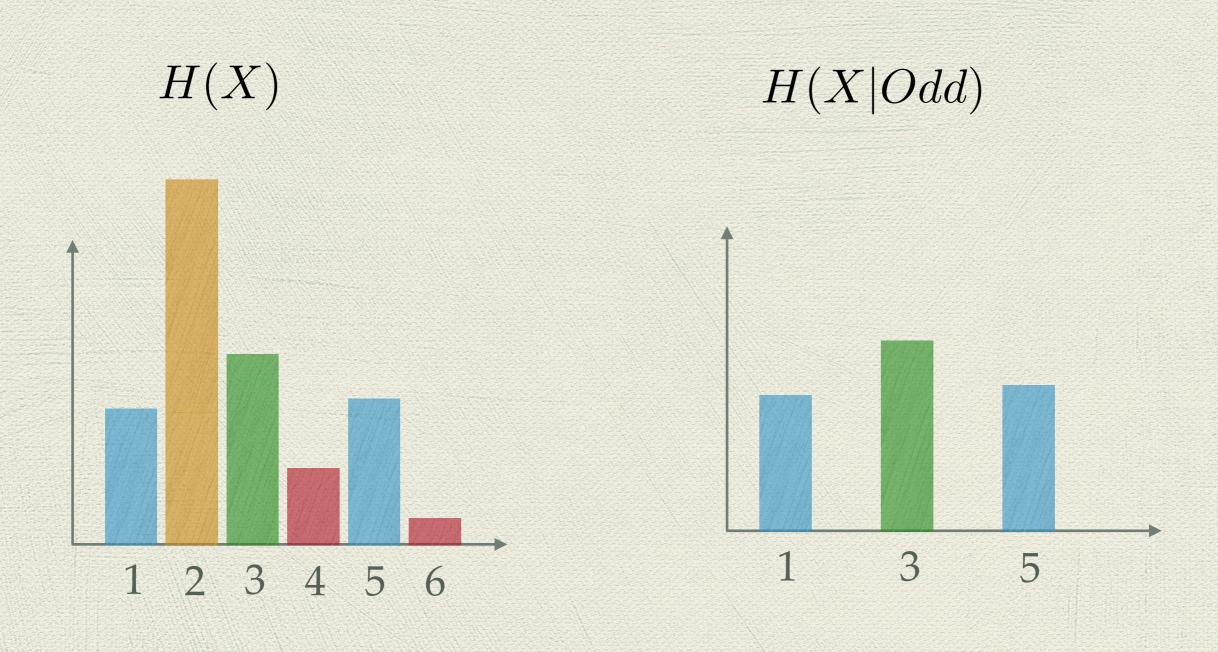


Information Gain

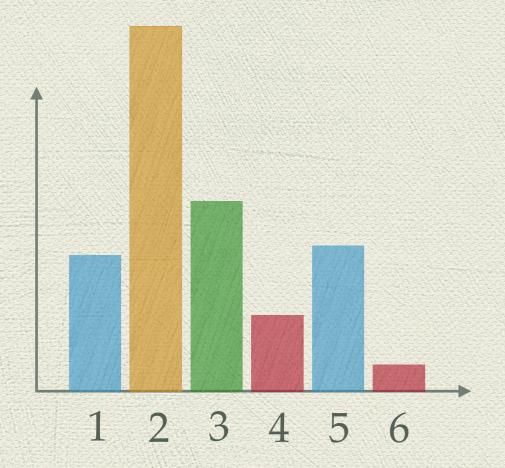


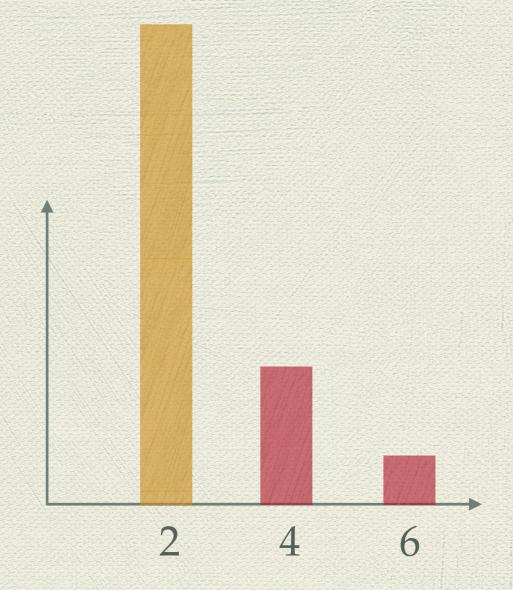


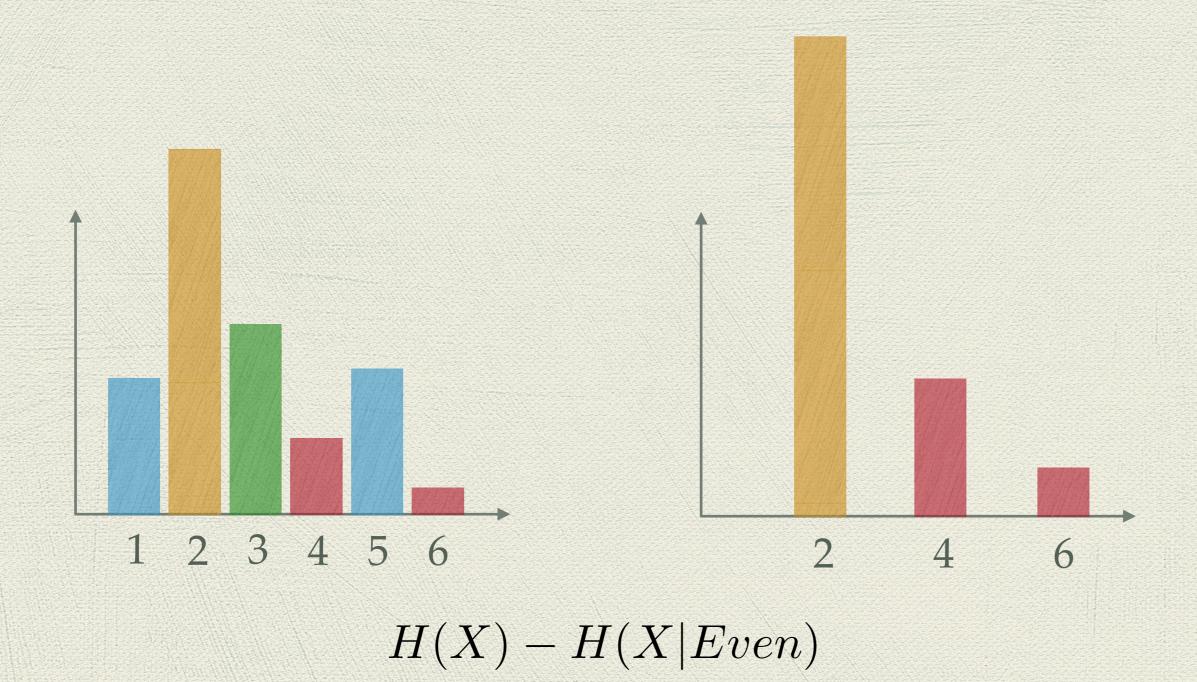
Information Gain



$$H(X) - H(X|Odd)$$



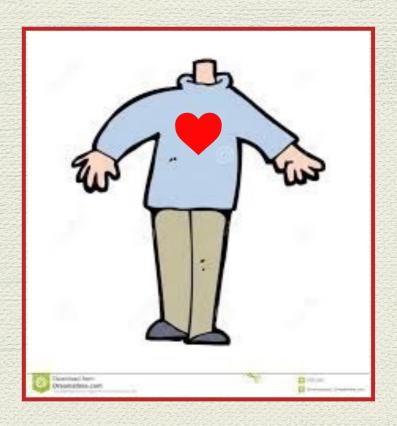




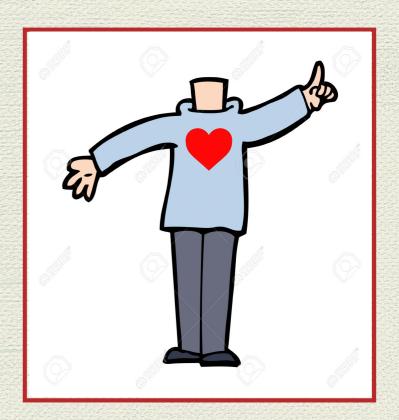
0- Unspeakable Information

Information transfer requires a common frame of reference.

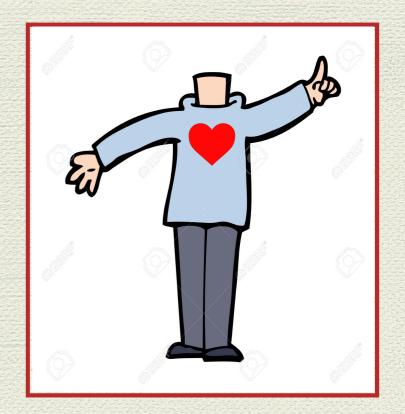
Raise your LEFT hand.



Raise your LEFT hand.



Raise your LEFT hand.



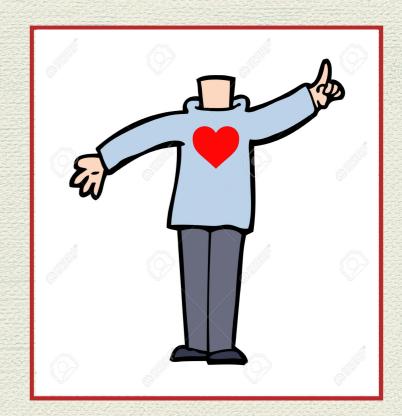
We cannot communicate the word

LEFT

with any string of bits

 $0\,1\,0\,1\,1\,1\,0\,0\,0\,1\,1\,1\,0\,1\,0\,1\,1\,0$

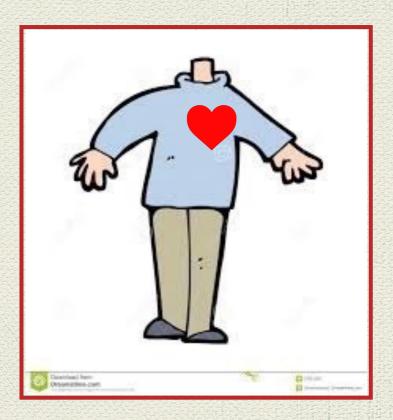
Raise your LEFT hand.



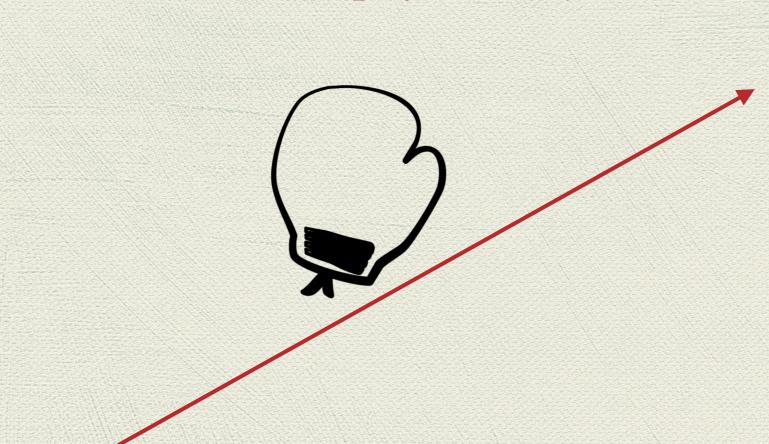
We cannot communicate the word LEFT

with any string of bits

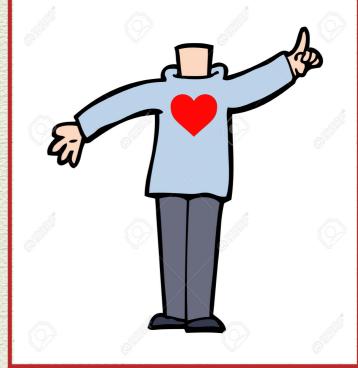
010111000111010110

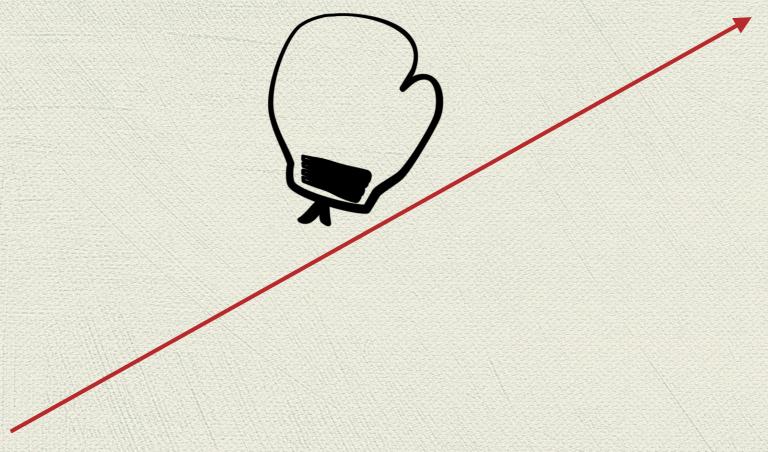


We should send a physical object.



We should send a physical object.





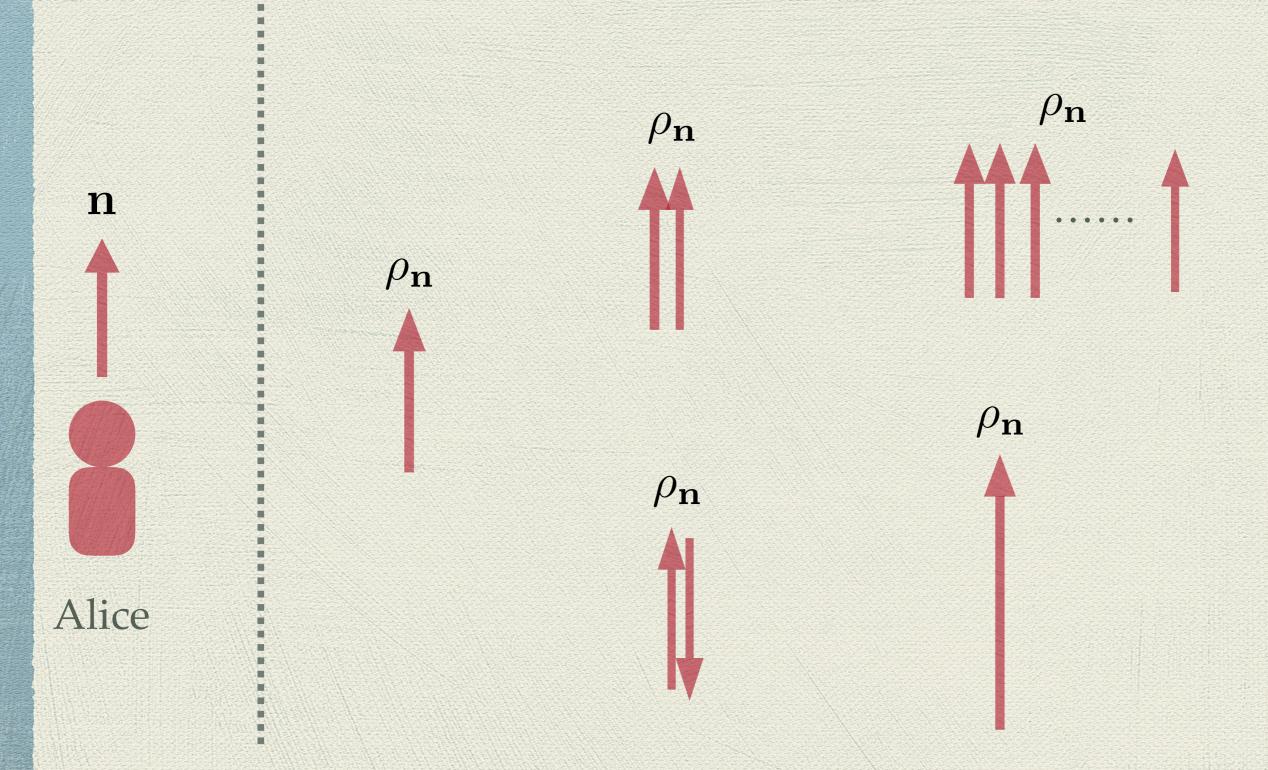
Estimating a direction

n

How good is our guess?

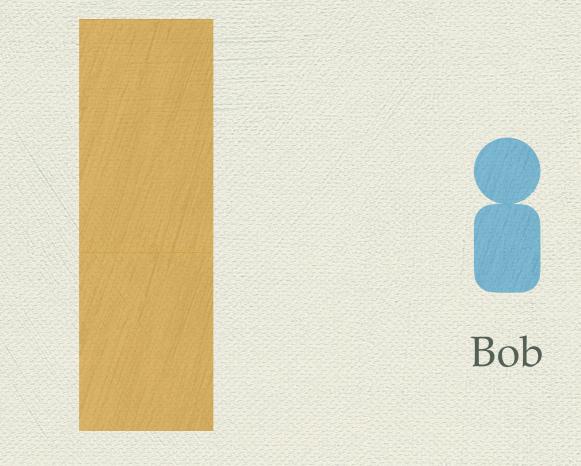
 $F(\mathbf{n}, \mathbf{n}_g) = \frac{1}{2}(1 + \mathbf{n} \cdot \mathbf{n}_g)$

Encoding a direction



Measurements

$$|n_g, n_g
angle$$
 $|n_g, n_g
angle$
 $|n_g, -n_g
angle$
 $|-n_g, n_g
angle$
 $|-n_g, -n_g
angle$



$$\{E_1, E_2, \cdots E_g, \cdots\}$$

Estimating a direction

 \mathbf{n}

Alice

$$P(\mathbf{n}_g|\mathbf{n}) = Tr(E_g\rho_\mathbf{n})$$

$$F(\mathbf{n}, \mathbf{n}_g) = \frac{1}{2} (1 + \mathbf{n} \cdot \mathbf{n}_g)$$

 \mathbf{n}_g

Bob

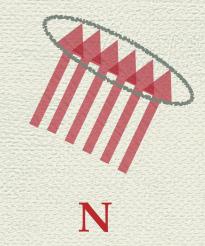
An interesting question

OR

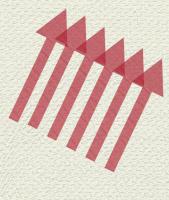
Which pair is better?

Gisin and Popescu, PRL(1999).





$$\overline{F} = \frac{N+1}{N+2}$$



N

$$\overline{F} = \frac{N+1}{N+2}$$

N

Massar and Popescu, PRL (1995).
Existence of Continuous Optimal measurement

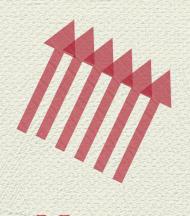
$$\overline{F} = \frac{N+1}{N+2}$$

N

Massar and Popescu, PRL (1995).
Existence of Continuous Optimal measurement

Derka, Buzek, and Ekert, PRL (1998)

Construction of finite Optimal measurement



$$\overline{F} = \frac{N+1}{N+2}$$

N

Massar and Popescu, PRL (1995).
Existence of Continuous Optimal measurement

Derka, Buzek, and Ekert, PRL (1998)

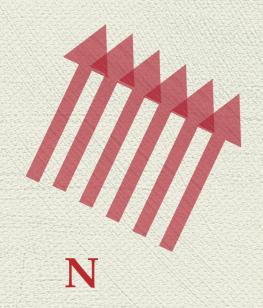
Construction of finite Optimal measurement

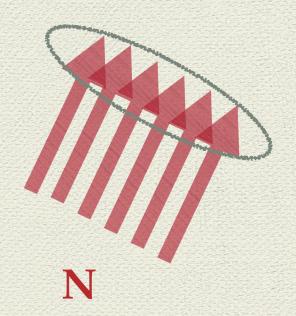
Latorre, Pascual, and Tarrach (1998)

Construction of minimal Optimal measurement for N<7

Using N spins

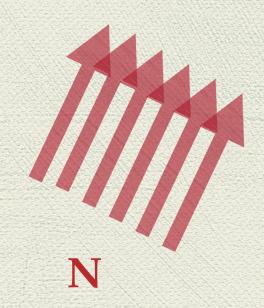
Optimal measurement



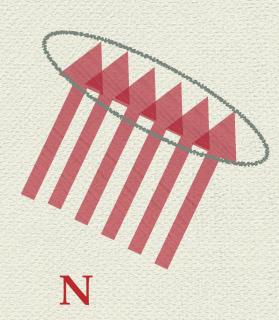


Using N spins

Optimal measurement



$$\overline{F} = \frac{N+1}{N+2}$$



The problem of security

Alice

Bob

Eve can do measurement on half of the spins

The problem of security

Alice

Eve

Bob

Eve can do measurement on half of the spins

I- Using Entangled States for setting up an SRF

Using entanglement

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

The idea of QKD:

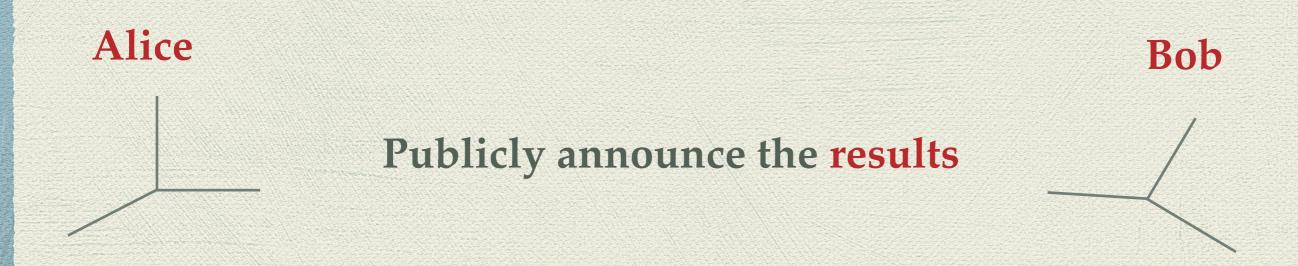
Alice

QKD: Publicly announce bases

Keep the results for yourself.

Bob

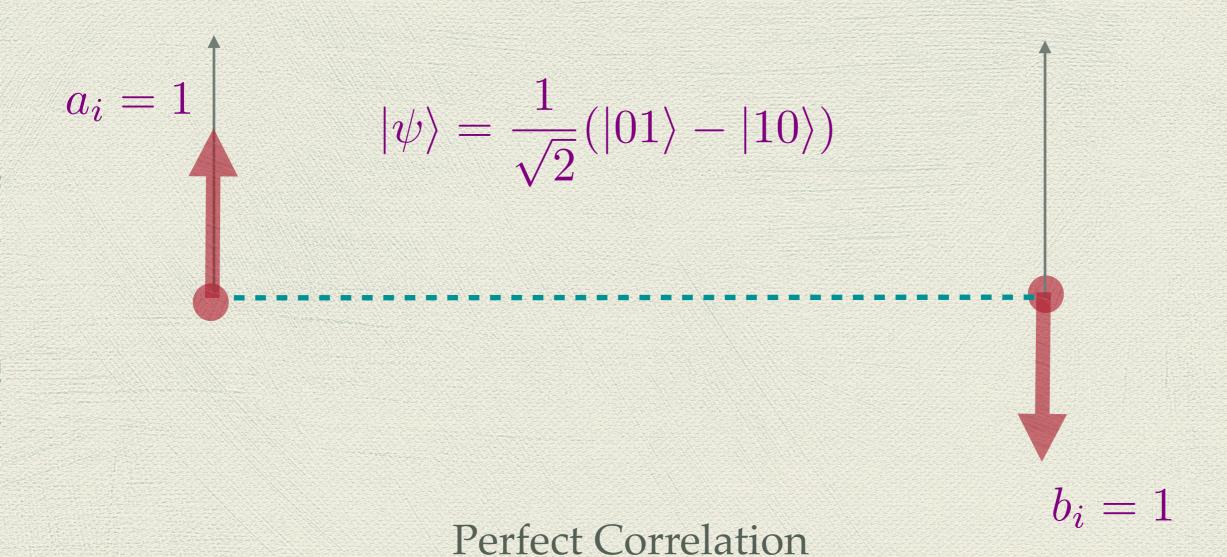
The idea of Direction Sharing

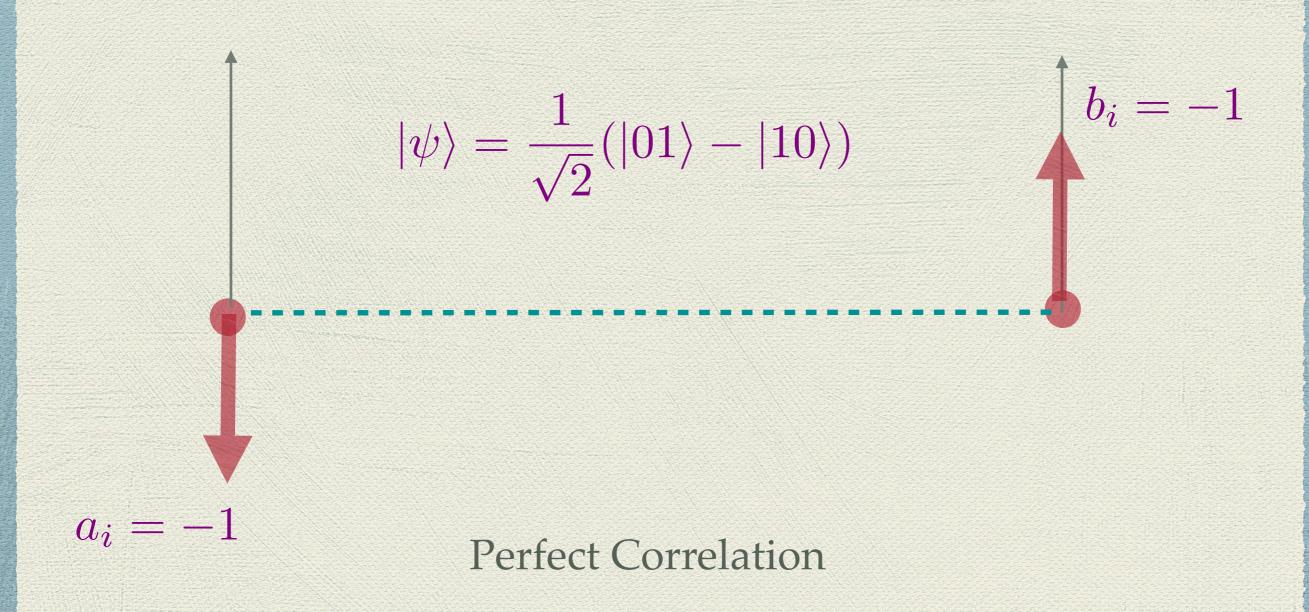


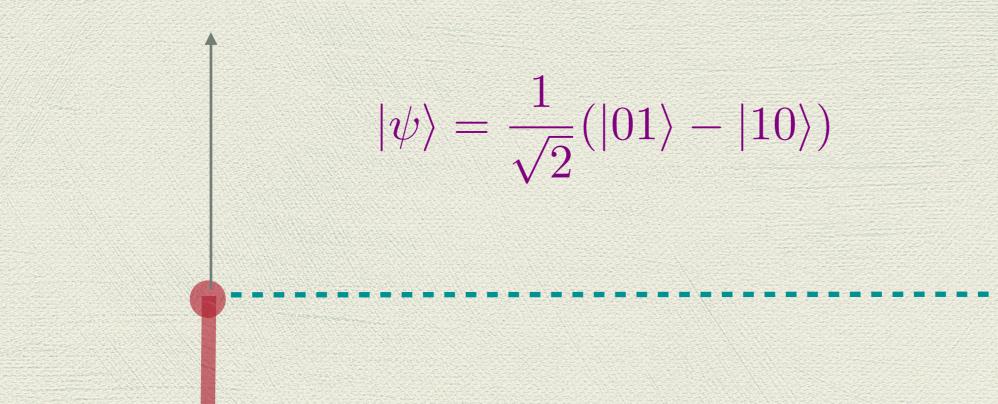
And use the correlations to align the bases

$$|\psi\rangle = rac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

Perfect Correlation



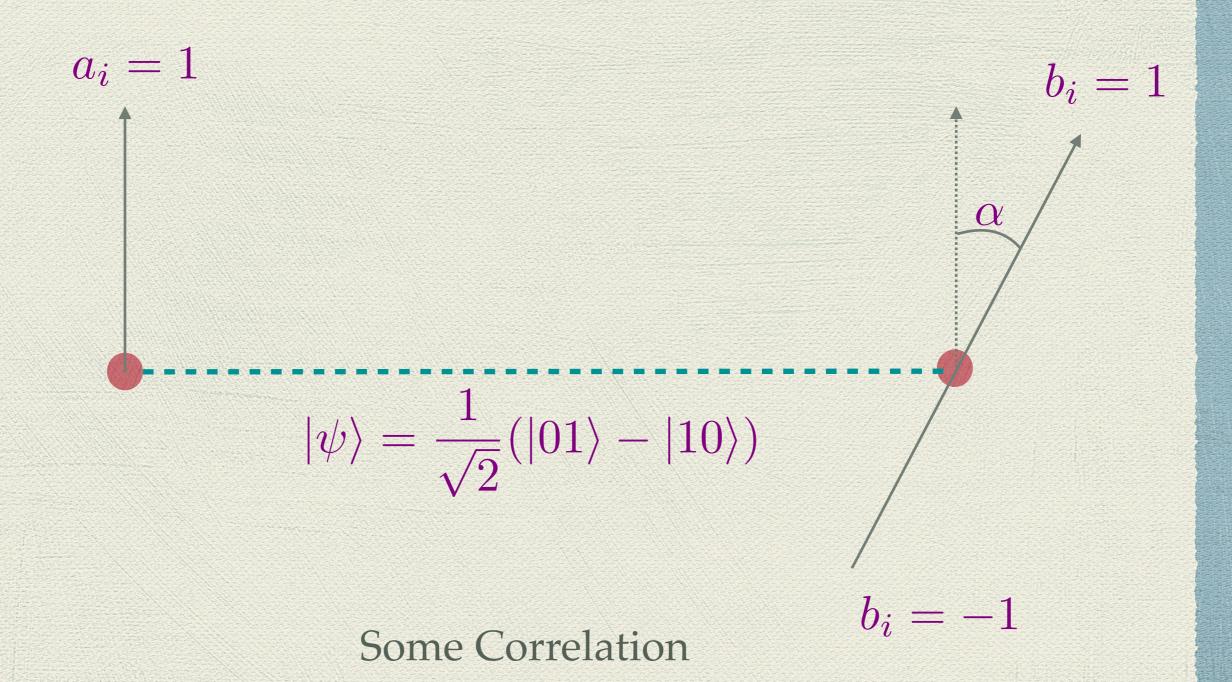


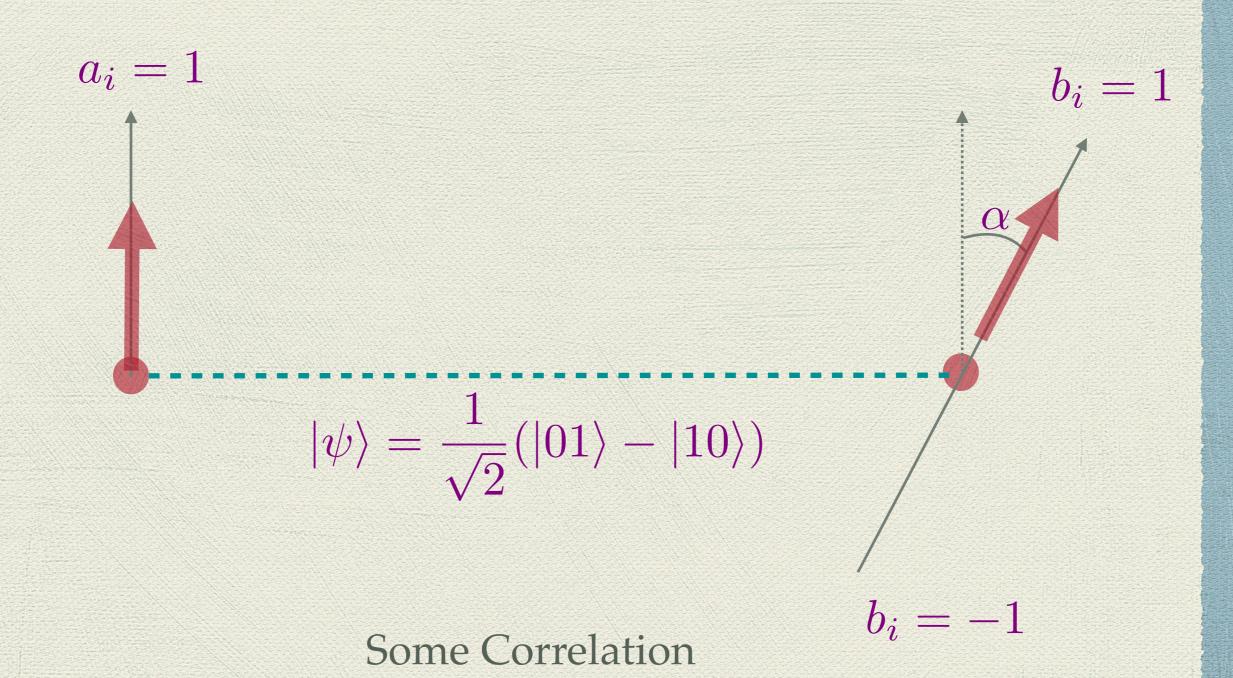


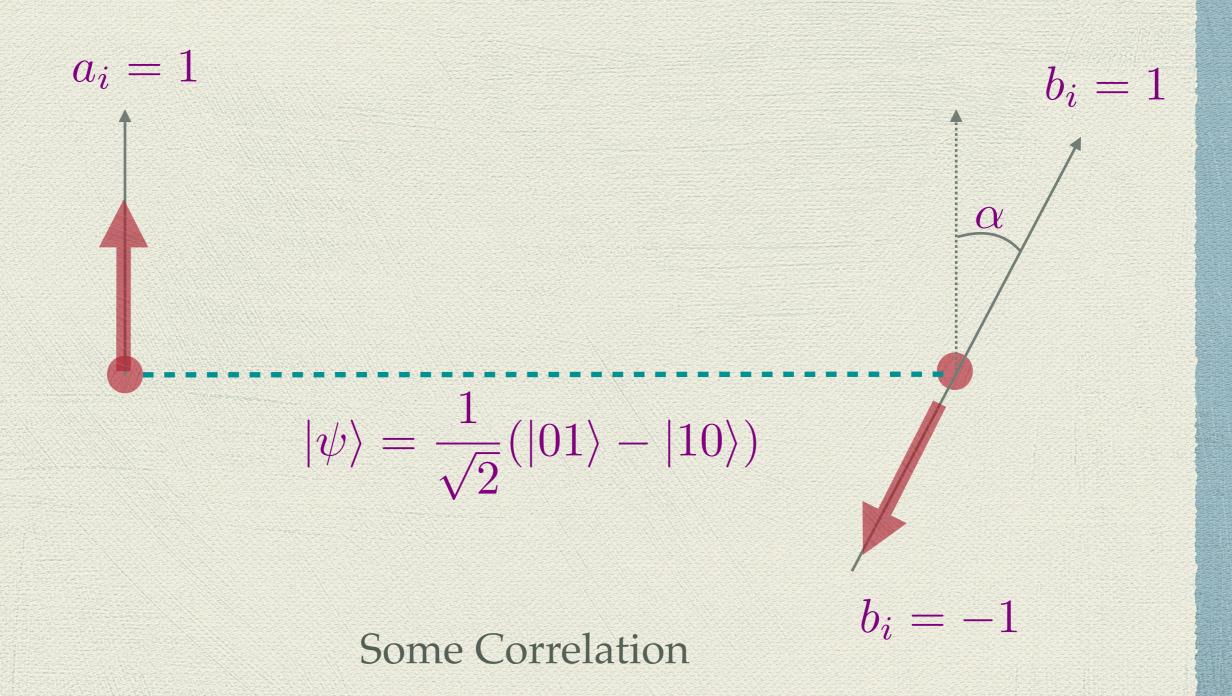
 $a_i = -1$

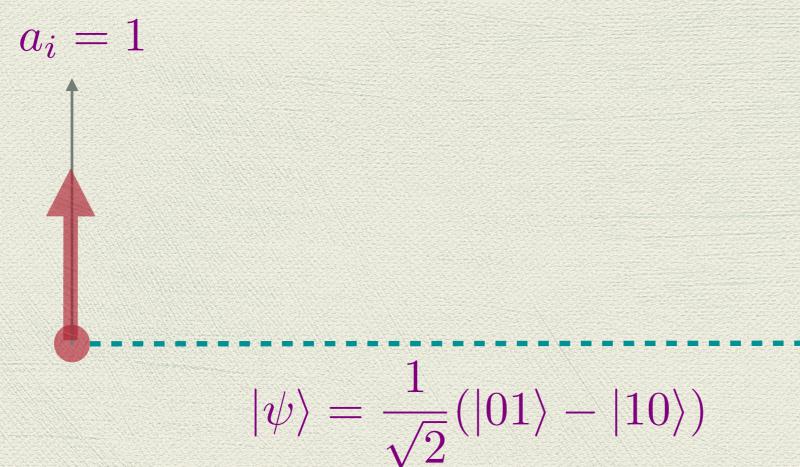
Perfect Correlation

$$q_N = \frac{1}{N} \sum_i a_i b_i = 1$$



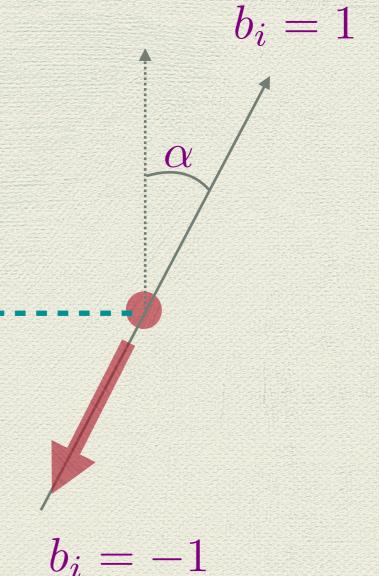




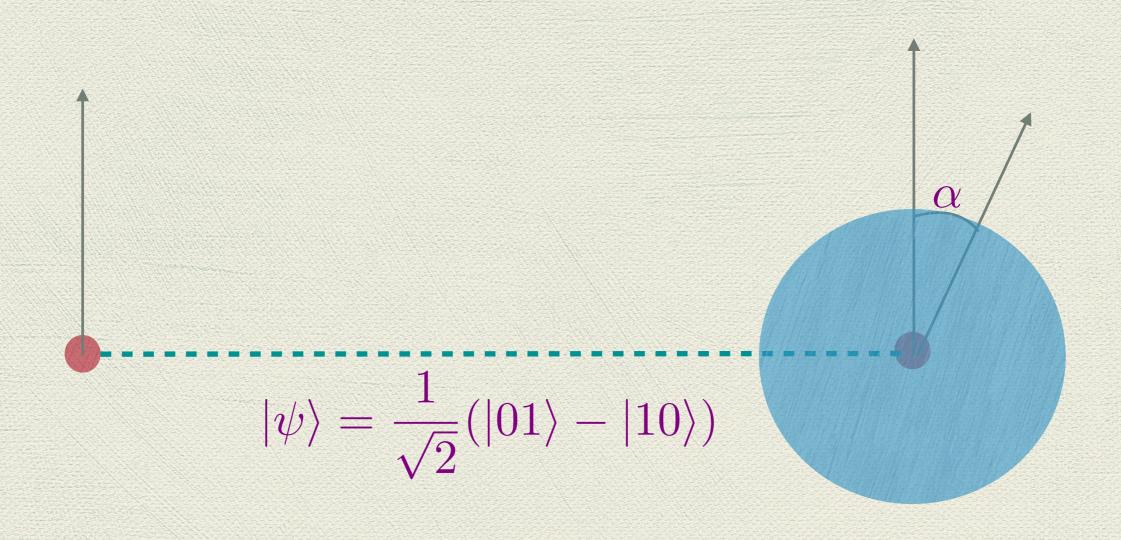


Some Correlation

$$q_N = \frac{1}{N} \sum_i a_i b_i$$



A naive method: Brute force search

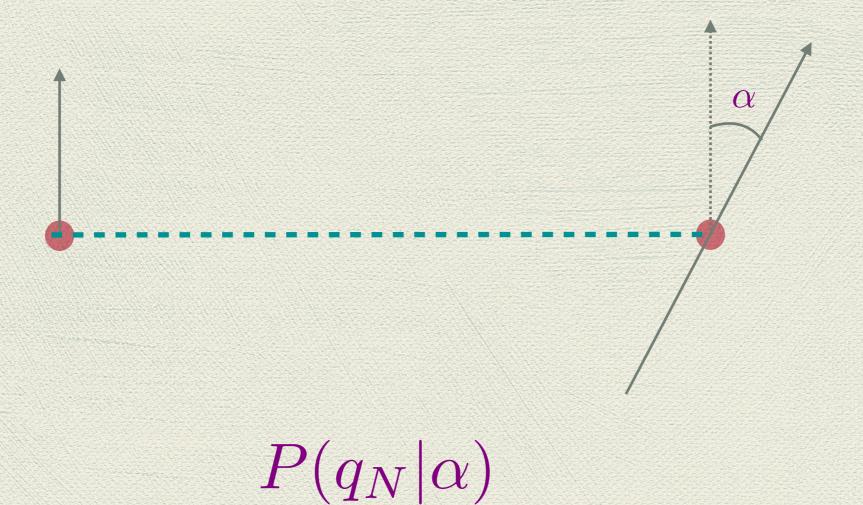


However

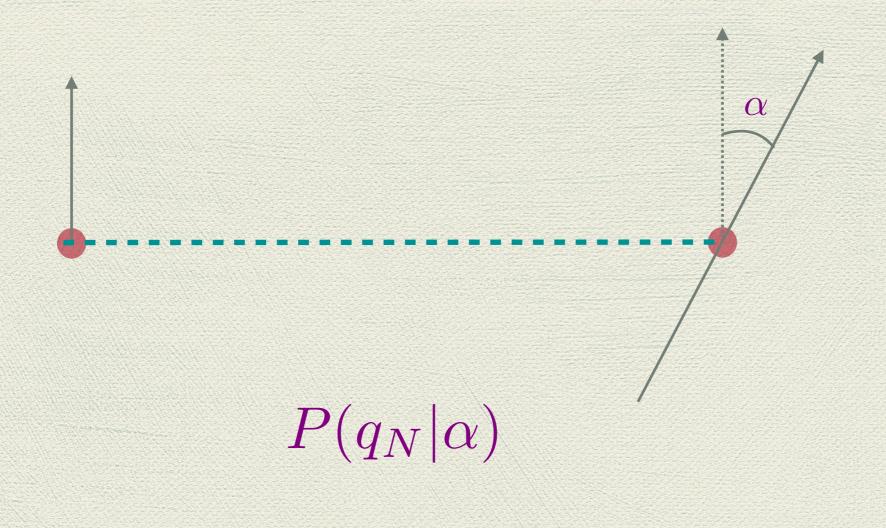
The number of pairs is not infinite!

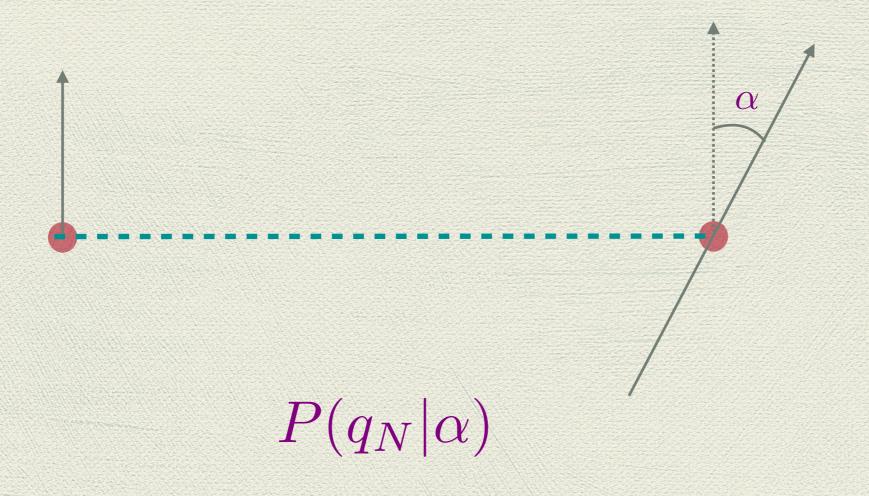
So we have to estimate the angle from a correlation which has fluctuations.

The probability that the correlation is $\,q_{\scriptscriptstyle N}\,$ if the angle is $\,\alpha\,$

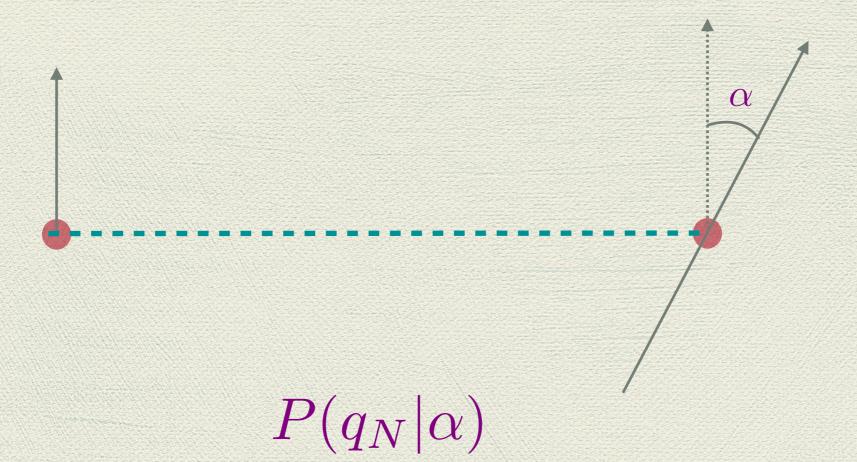


The probability that the correlation is q_N if the angle is α





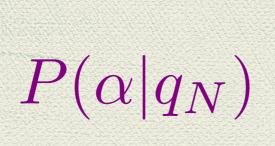
 $\langle q_N \rangle = \cos \alpha$

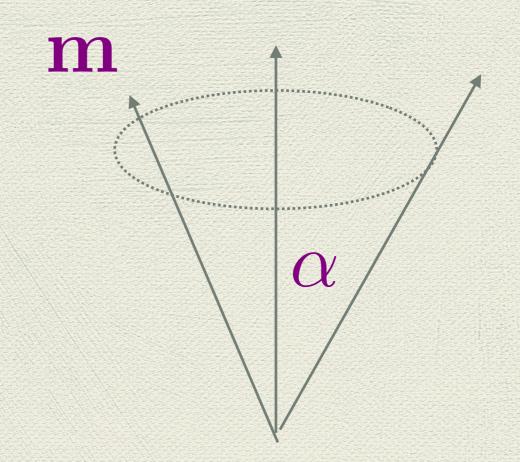


$$\langle q_N \rangle = \cos \alpha$$

$$\langle q_N^2 \rangle = \cos^2 \alpha + \frac{1}{N} \sin^2 \alpha$$

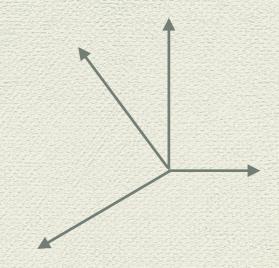
The Baeysian Approach





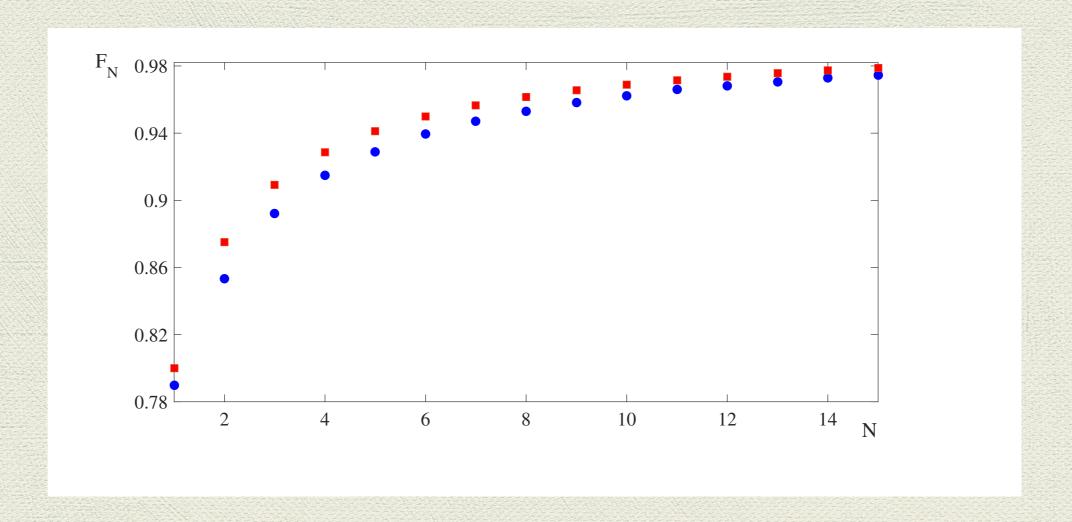
What is the probability that the angle is α if the correlation is q_N

A good estimate with three measurements



$$\mathbf{m}_e = \frac{1}{\sqrt{q_x^2 + q_y^2 + q_z^2}} (q_x \mathbf{x} + q_y \mathbf{y} + q_z \mathbf{z})$$

Comparison with previous methods



- Our method
- Other methods

$$\overline{F}_N = \frac{3N+1}{3N+2}$$

Advantages of our method-1

N-qubit measurement

Alice



Bob

Advantages of our method-1

N-qubit measurement

Alice

Bob

1-qubit measurement

2- The problem of security

Eve cannot unravel the shared direction, since only

unspeakable

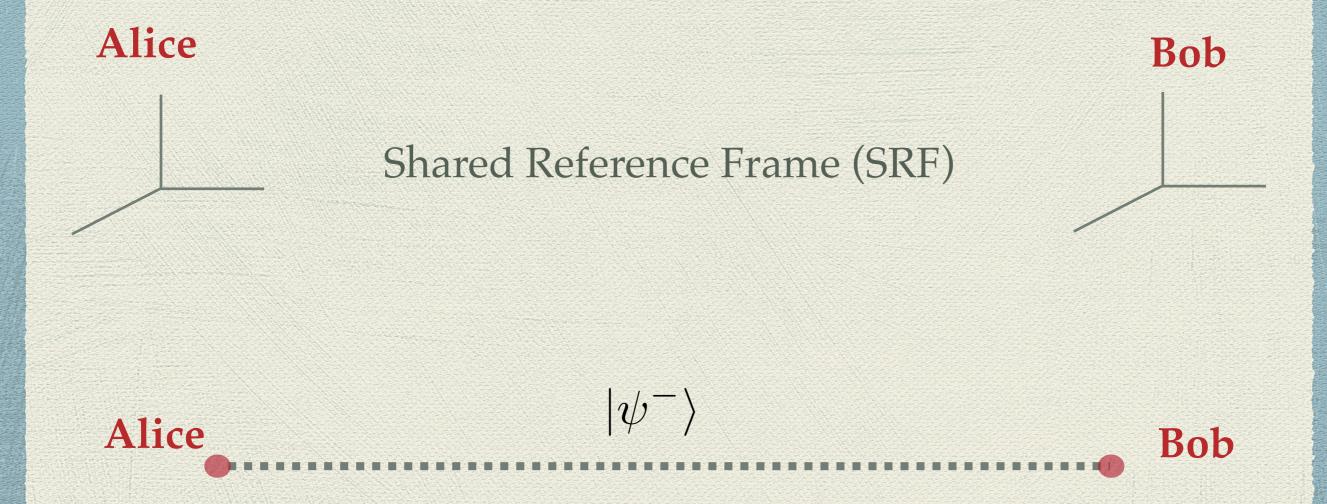
information is being communicated.

10101000100001000010000

II- Power of a shared singlet state

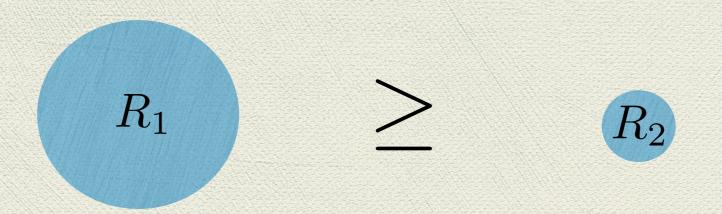
F. Rezazadeh, A. Mani, V. Karimipour, PRA, 100, (2019).

Which one is better?



Shared Singlet State (SRF)

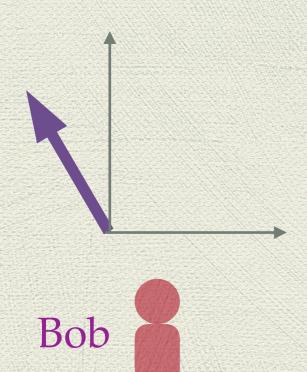
The main idea of resource theory:

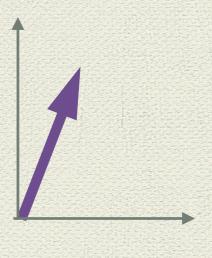


$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \geq a|00\rangle + b|11\rangle$$

An example: Estimation of an angle



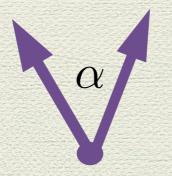


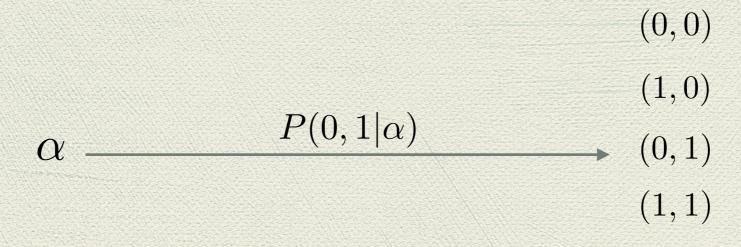


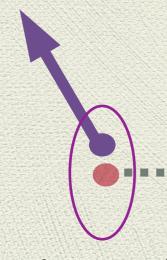
Charlie

Information Gain=0.0270

S. D. Bartlett, T. Rudolph and R. W. Spekkens, PRA (2004).

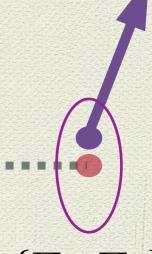






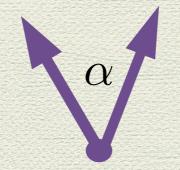
 $\{\Pi_0,\Pi_1\}$

Bob



 $\{\Pi_0,\Pi_1\}$

Charlie

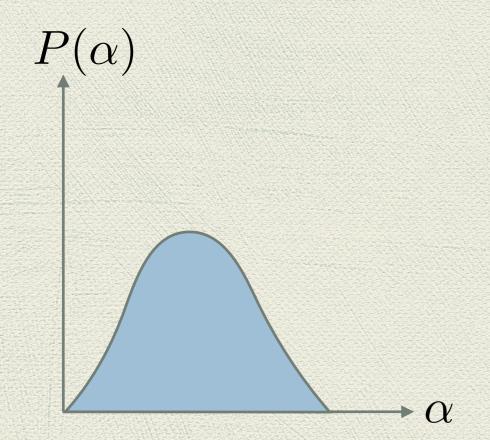


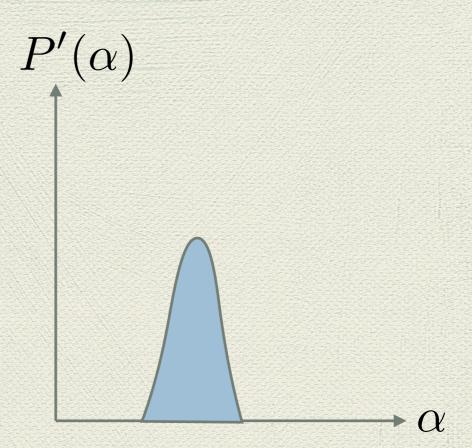
 $\alpha \leftarrow P(\alpha|0,1) \qquad (1,0) \qquad (0,1) \qquad (1,1)$

(0,0)

How do we judge our success?

$$S = -\int P(\alpha) \log P(\alpha) d\alpha$$

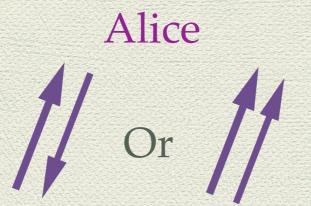


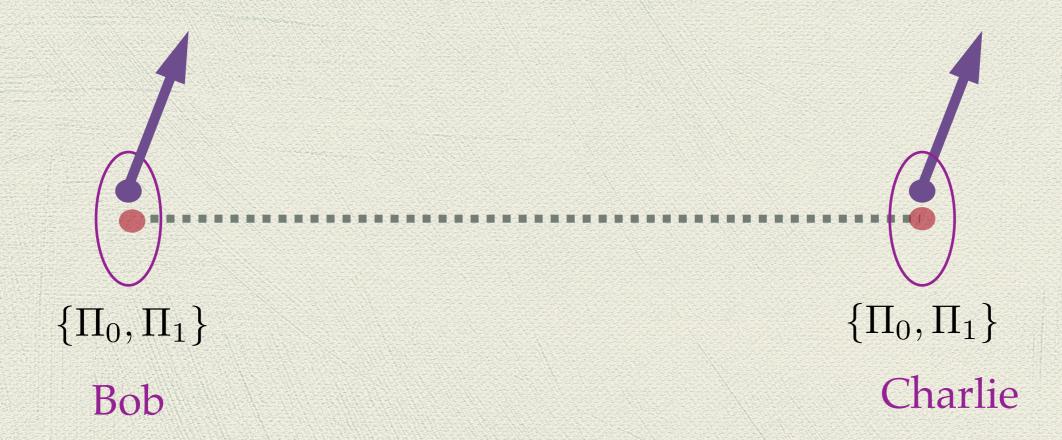


Information Gain= 0.0284

F. Rezazadeh, A. Mani, V. Karimipour, PRA, 100, (2019).

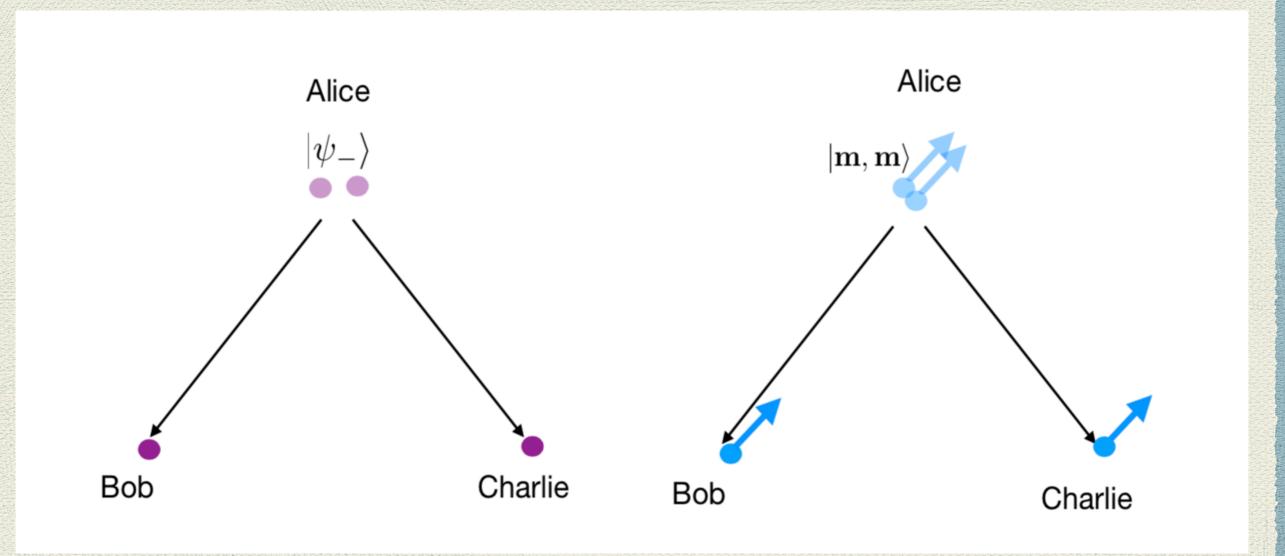
resource	SRF	SSS
angle estimation	0.0270	0.0284





resource	SRF	SSS $j = \frac{1}{2}$	SSS $j = 1$	SSS $j \longrightarrow \infty$
Discriminating parallel and anti-parallel spins	0.0817	0.0981	0.0841	0.0817

Task b: Discrimination between Parallel spins and a singlet

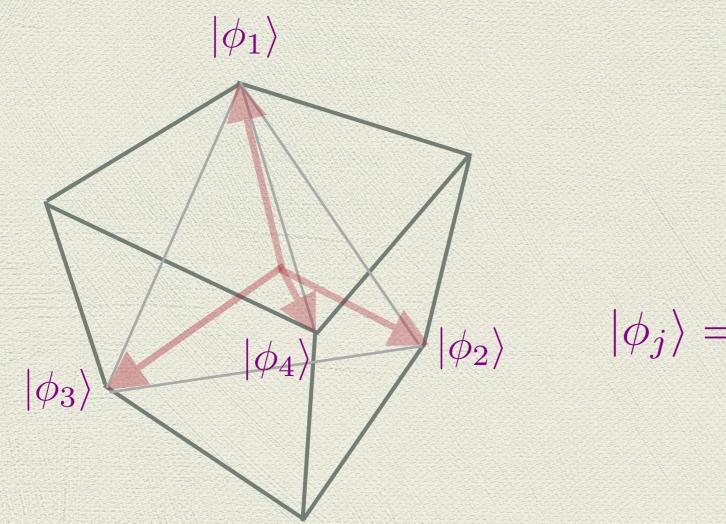


resource	SRF	SSS	refbit
probability of conclusive result	$\frac{1}{3}$	$\frac{3}{8}$	$\frac{1}{24}$

Continued in lecture 2

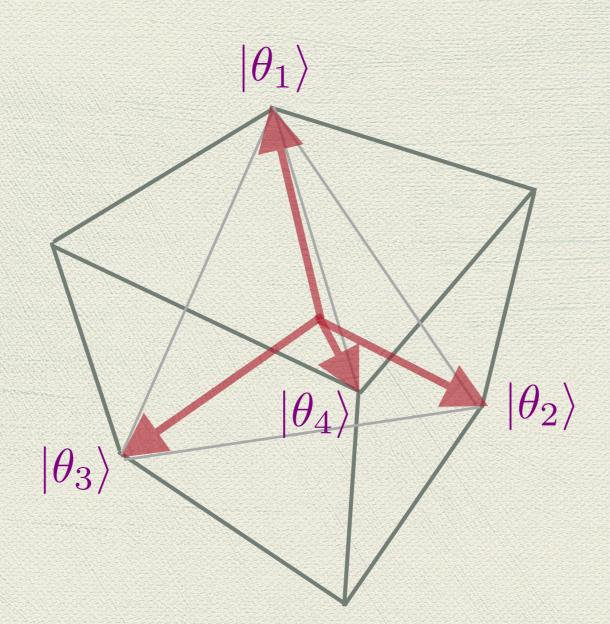
Thank you for your attention

Measurements

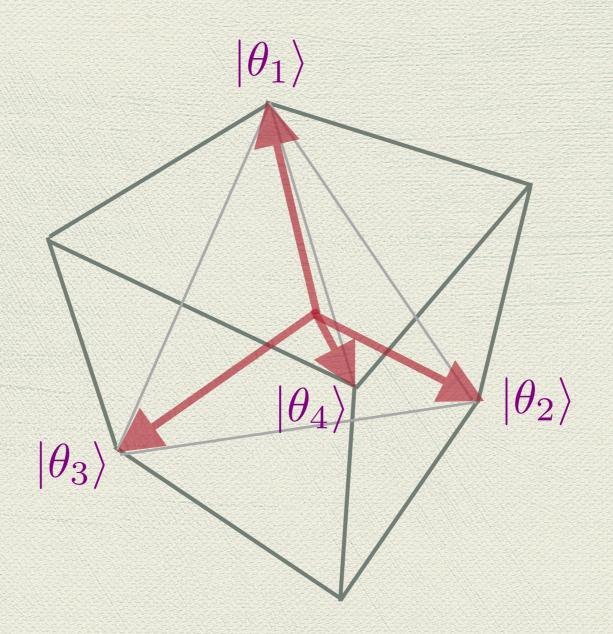


$$|\phi_j\rangle = \frac{\sqrt{3}}{2}|\mathbf{n}_j,\mathbf{n}_j\rangle + \frac{1}{2}|\psi^-\rangle$$

$$P(\mathbf{n}_g|\mathbf{n}) = Tr(E_g\rho_\mathbf{n})$$



$$|\theta_i\rangle = \alpha |\mathbf{n}_i, -\mathbf{n}_i\rangle + \beta |\omega\rangle$$



$$\overline{F} = 0.79$$

$$|\theta_i\rangle = \alpha |\mathbf{n}_i, -\mathbf{n}_i\rangle + \beta |\omega\rangle$$

Bayes Method



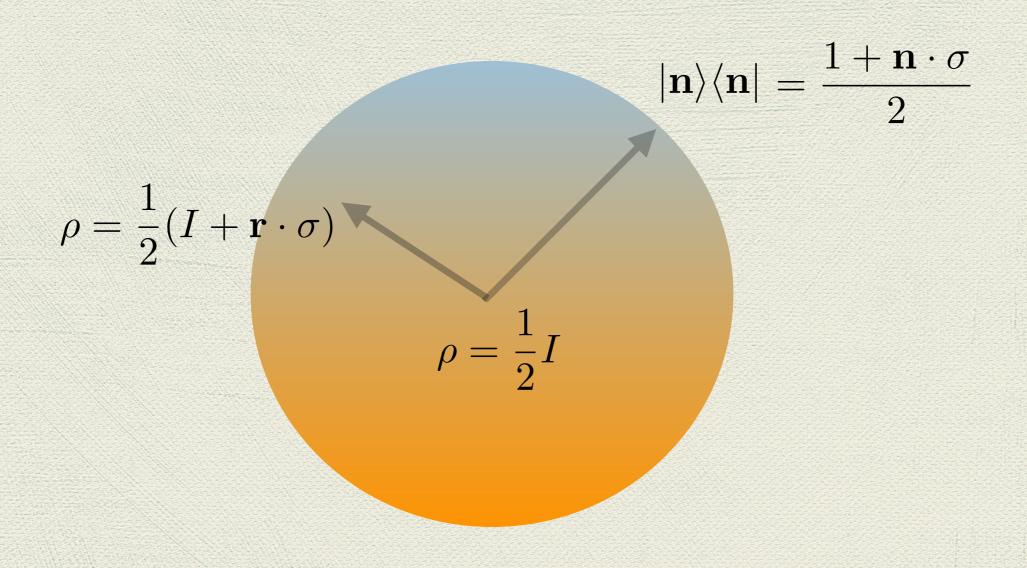
$$(q, 1-q)$$

9 Tails

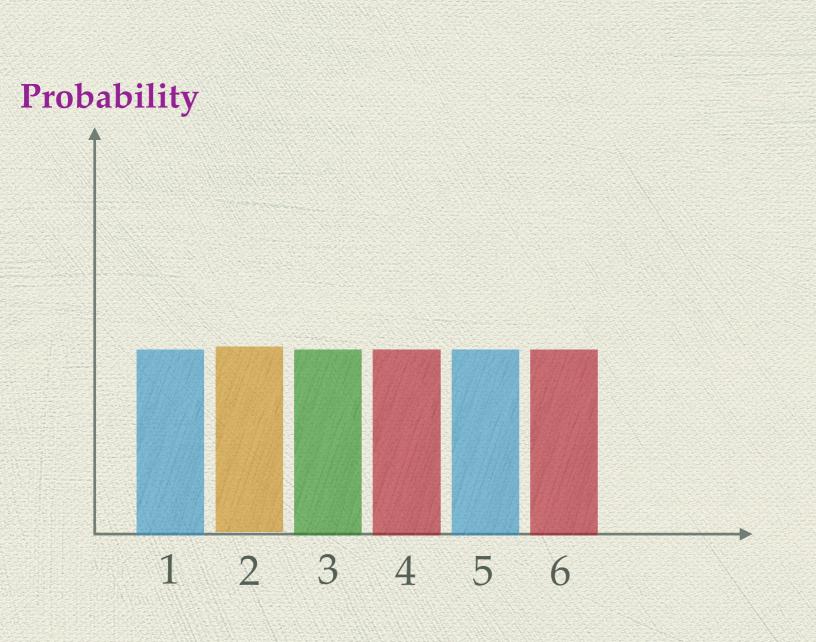
7 Heads

What is the probability that a **p** coin has been given to you?

Qubits and Bloch Sphere



The amount of information



Estimating a direction

n

Alice

$$P_{Success}(\mathbf{n}) = \sum_{g} P(\mathbf{n}_g | \mathbf{n}) \frac{1 + \mathbf{n}_g \cdot \mathbf{n}}{2}$$

$$P_{Success} = \int d\mathbf{n} \sum_{g} P(\mathbf{n}_g | \mathbf{n}) \frac{1 + \mathbf{n}_g \cdot \mathbf{n}}{2}$$

 \mathbf{n}_g

Bob

$$Pr(inadmissible) < (\frac{N}{N+2})^2(\frac{2}{3} + \frac{4}{3N})$$

$$Pr(inadmissible) < (\frac{N}{N+2})^2(\frac{2}{3} + \frac{4}{3N})$$

A rough estimate

$$Pr(inadmissible) < \frac{2}{3}$$

$$Pr(inadmissible) < (\frac{N}{N+2})^2(\frac{2}{3} + \frac{4}{3N})$$

A rough estimate

$$Pr(inadmissible) < \frac{2}{3}$$

Exact calculation

$$Pr(inadmissible) \approx \frac{1}{3}$$

When we have infinite pairs

$$q_N = \frac{1}{N} \sum_i a_i b_i$$

When we have infinite pairs

$$q_N = \frac{1}{N} \sum_i a_i b_i$$

$$N \longrightarrow \infty$$

$$q_{\infty} = P_{++} + P_{--} - P_{+-} - P_{-+}$$

When we have infinite pairs

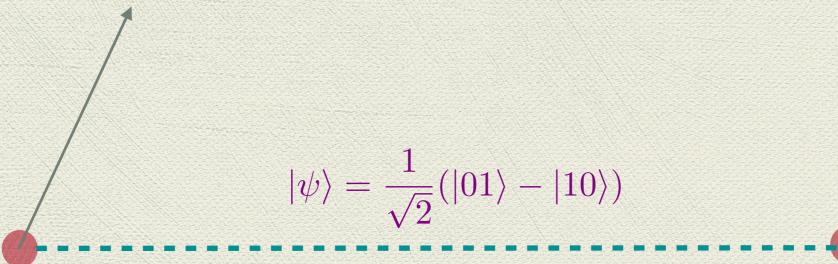
$$q_N = \frac{1}{N} \sum_i a_i b_i$$

$$N \longrightarrow \infty$$

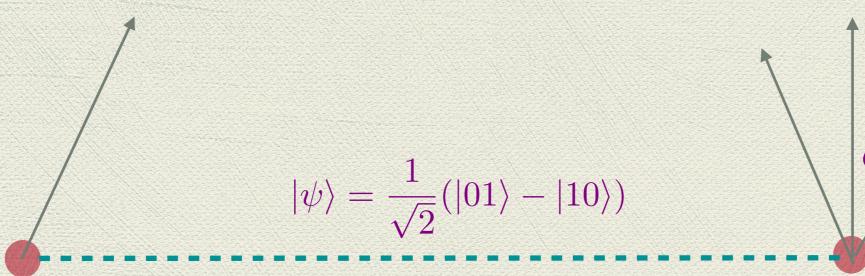
$$q_{\infty} = P_{++} + P_{--} - P_{+-} - P_{-+}$$

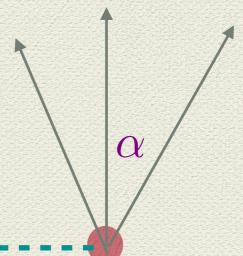
$$q_{\infty} = \cos \alpha$$

One measurement is not enough!

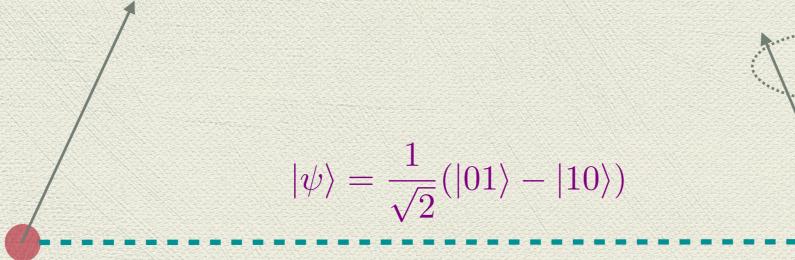


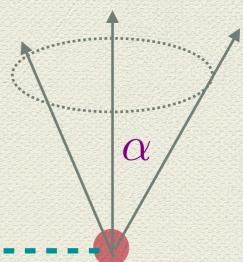
One measurement is not enough!



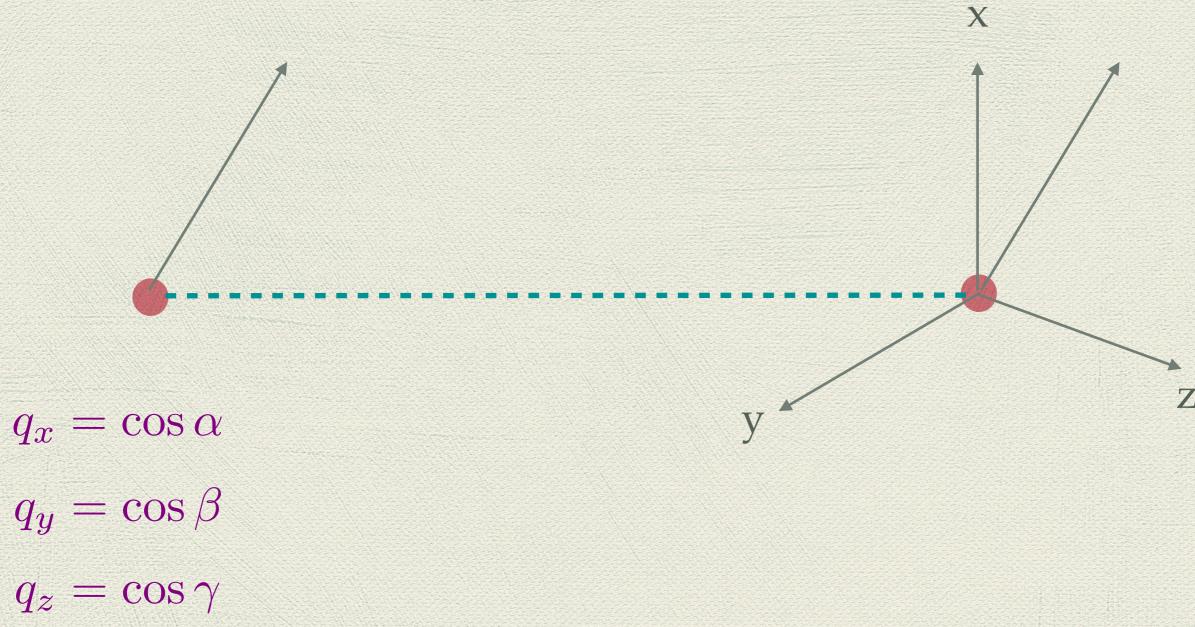


One measurement is not enough!





With three measurements:

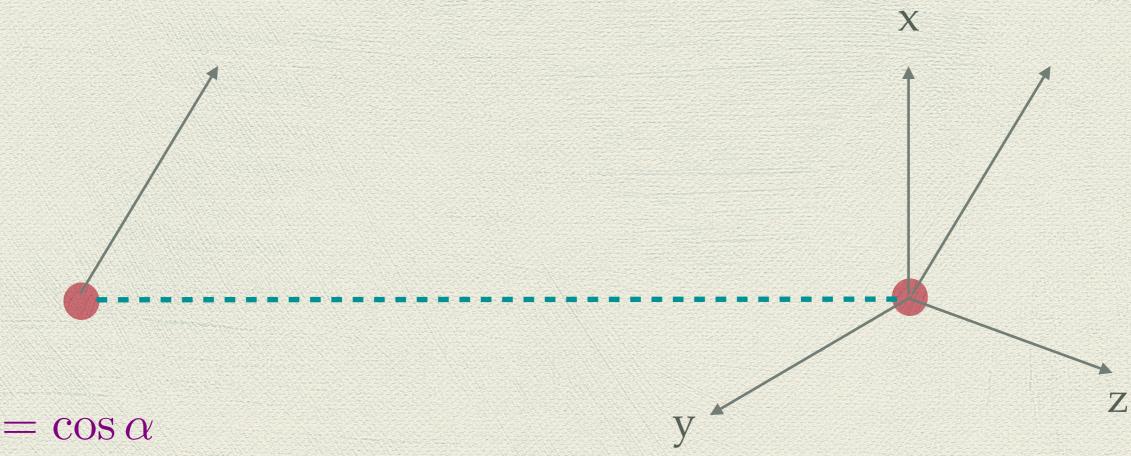


$$q_x = \cos \alpha$$

$$q_y = \cos \beta$$

$$q_z = \cos \gamma$$

With three measurements:



$$q_x = \cos \alpha$$

$$q_y = \cos \beta$$
$$q_z = \cos \gamma$$

$$q_z = \cos \gamma$$

$$\mathbf{m} = q_x \ \mathbf{x} + q_y \ \mathbf{y} + q_z \ \mathbf{z}$$

$$\mathbf{m}_e = \cos \alpha_e \ \mathbf{x} + \cos \beta_e \ \mathbf{y} + \cos \gamma_e \ \mathbf{z}$$

$$\mathbf{m}_e = \cos \alpha_e \ \mathbf{x} + \cos \beta_e \ \mathbf{y} + \cos \gamma_e \ \mathbf{z}$$

However the vector is not normalized:

$$\mathbf{m}_e = \cos \alpha_e \ \mathbf{x} + \cos \beta_e \ \mathbf{y} + \cos \gamma_e \ \mathbf{z}$$

However the vector is not normalized:

$$\cos^2 \alpha_e + \cos^2 \beta_e + \cos^2 \gamma_e \neq 1$$

$$\cos \alpha_e = \frac{N}{N+2} q_N$$

$$\mathbf{m}_e = \cos \alpha_e \ \mathbf{x} + \cos \beta_e \ \mathbf{y} + \cos \gamma_e \ \mathbf{z}$$

However the vector is not normalized:

$$\cos^2 \alpha_e + \cos^2 \beta_e + \cos^2 \gamma_e \neq 1$$