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Levels of interconnection

Telecommunications Campus networks LANs

10,000 km 1000 km 1 km 100 m
interconnect distance

Optics currently dominates for long distance interconnects
Increasingly, optics is used in local area network applications
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Electrical signaling within computers is encountering severe limitations



Quantum well problem as a base on the
superconducting qubit implementation
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quantum interference device (SQUID) can be put into a super-
position of two magnetic-flux states: one corresponding to a few
microamperes of current flowing dockwise, the other corre-
sponding to the same amount of current flowing anticlockwise.
The simplest SQUID (the radio frequency (r.f) SQUID) is a
superconducting loop of inductance L broken by a Josephson tunnel
junction with capacitance C and aritical current . In equilibrium, a
dissipationless supercurrent can flow around this loop, driven by
the difference between the flux @ that threads the loops and the
external flux @ applied to the loop. The dynamics of the SQUID
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Observation of Cascaded Two-Photon-Induced Transitions between Fluxoid States of a SQUID

Siyuan Han

Department of Phvsics and Astronomy, Universitv of Kansas, Lawrence, Kansas 66045

R. Rouse
Sun Microsystems, Sunmvale, California 94086

I.E. Lukens

Departinent of Physics and Astronomyy, University at Stonv Brook, Stony Brook, New York 11794-3800
(Received 21 September 1999)

We present evidence for transitions between fluxoid wells of a SQUID due to cascaded. two-photon
processes. Such transitions are evidenced by an anomalous dependence on the transition rate from
the one-photon resonant level within the initial well, which cannot be explained by previously observed
macroscopic resonant funneling. These two-photon processes may be a significant source of decoherence
in SQUID qubits subject to microwave radiation.

PACS numbers: 74.50.+r, 03.65.—w, 85.25Dq

The degree to which macroscopic degrees of freedom  quantum ®g) of ¢, = 5. The two wells of the potential
(MDFs) obey quantum mechanics is a perennial source of Leplesem the f = () and 1 ﬂuxmd state of the SQUID,
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Theoretical computations



Confined quantum oscillator vs.
infinite potential well




1D Schrodinger equation — infinite potential well

[~ L v @] w@) = Ep),

2m dx?

we have to solve the following second order differential equation:

ay o2
dx2+ic Y =0,

where, k = fzm > 0.

explicit expressions of the wavefunction y,,(x) of the stationary states and the
discrete energy spectrum E,, as follows:

Y, (x) = \/ia COS(%nx),

232.,2
E, =" n=123,...

4ma '’




1D Schrddinger equation — harmonic
oscillator within the canonical approach




Confined harmonic oscillator

ENERGY LEVELS OF AN ARTIFICIALLY BOUNDED LINEAR

OSCILLATOR.

By ¥. C. AvrLuck, Dyal Singh College, Lahore.
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DYNAMICAL FRICTION

II. THE RATE OF ESCAPE OF STARS FROM CLUSTERS AND THE
EVIDENCE FOR THE OPERATION OF DYNAMICAL FRICTION

S. CHANDRASEKHAR

Yerkes Observatory
Received January 7, 1943

ABSTRACT

In this paper a general method is described for determining the rate of escape of stars from galactic
and globular clusters which is based on certain general statistical principles. Essentially the method con-
sists in reducing the problem to a boundary-value problem in partial differential equations and in making
use of 11:]16 interpretation of the stochastic process in the velocity space as a diffusion process of a rather
general type,

The rate of escape has been evaluated, first, ignoring dynamical friction, and, second, making due al-
lowance for it. It appears that the rate of escape of stars predicted on the first basis is too rapid to be
compatible with a life for galactic clusters even of the order of 5108 years. However, the rates of escape
are drastically reduced when dynamical friction is allowed for and permits a time scale of the order of
3X10° years. Itisconcluded that in the very existence of galactic clusters like the Pleiades we can look
for direct evidence for the operation of dynamical friction which was predicted on theoretical grounds in
the preceding paper.

1. Introduction—In the preceding paper' we have shown that stars must experience
dynamical friction during their motion. This conclusion, first reached on the basis of
certain very general considerations, was later confirmed by a more direct analysis of the



Hypergeometric function

(@1, ...,ar)k = (a1)k - - (Qr)k.
Pochhammer symbol
(a)r :=ala+1)(a+2)---(a+k—1), k=1,2,3,....

[:{1)() =1



The Polynomial

If a;:=-n

Then
(—n) =-n (—n+1)(-—n+2)---(—m+k—-1), k=1,2,3,....

With a definition




Orthogonal Polynomials:
Basic Properties

- Definition in terms of the hypergeometric function

- Orthogonality (continuous or discrete, finite or infinite measure)
- How kind of recurrence relations it satisfies

- It is a solution of some equation

- Shift operators for it (Forward & Backward)

- Rodrigues-type formula

- Possible generating functions (including bilinear generating ones)



Askey Scheme of Hypergeometric
Orthogonal Polynomials - 1

J. LABELLE, Tableau d'Askey. In: Polynomes Orthogonaux et
Applications, geds. C. Brezinski et al.). Lecture Notes in
Mathematics 1171, Springer-Verlag, New York, 1985, xxxvi-
XXXVi

R. ASKEY and J.A. WILSON, Some basic hypergeometric
orthogonal polynomials that generalize Jacobi polynomials. Memoirs
of the American Mathematical Society 319, Providence, Rhode

Island, 1985



Askey Scheme of Hypergeometric
Orthogonal Polynomials - 2
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Askey scheme
of orthogonal
polynomials

continuous
or discrete

aF3(4) Wilson Racah aF3(4)
o~ Continuous Continuous ‘ ‘ ;
af5(3) Hahn Dual Hahn 3F5(3)
dual Hahn Hahn
z Meixner Pseudo .
2F1(2) - Jacobi _ Meixner Krawtchouk = 2F1(2)
Pollaczek Jacobi
/"'/’ .
///- I /
S
/
1F1(1)/2F(1) Laguerre Bessel Charlier 1F1(1) 2R (1)

2/5(0)

NS

/
//
e

//

Hermite [ 21(0)




Askey

SC h eme Of o e Racah JF3(d)
/
orthogonal /\ / \

Continuous Continuous

3F3(3) Hahn Dual Hahn 3F5(3)
dual Hahn Hahn
°
/ ,/
polynomials 17
4 / i/
> Meixner Pseudo ;
2F1(2) - Jacobi Meixner Krawtchouk 2F1(2)
Pollaczek Jacobi

explicit .~ |///

S O I u t i O n S Of 1Fi(1) /2Fo(1) Laguerre Bessel Charlier F(1)/aFo(1)

differential \ /

oro |ffe Frence ol Hermite Fo(0)
equations

//




Askey scheme
of orthogonal
polynomials

finite or infinite
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Hermite polynomials

H, (x) = (20)"F, (H/Q.(;z —1)/2 : 11:)

\% /_m e_szm (-}*‘)Hn (” dx = 2"n! Oy,



Jacobi polynomials

Rga’m(.}:) _ (a+l)n F (H.H—F(X—Fﬁ%—l _ l,r)

2 -
n! o + 1 2

For o > —1 and B > —1 we have

]
f (1—2)"(14+x)P PP (x) P (x) v
—1

2P Tt o+ )I(n+B+1)
- 2mt+oa+B+1 T(m+o+B+1)n!

5!?1!1

(1 =x2)V"(x) +[B — o — (ar + B +2)a] v (x)
——II(H—l—(I—Fﬁ——l) (x) =0, }'(-r):P,ga’m(.r)



Gegenbauer polynomials

The Gegenb wer (or ultraspherical) polynomials are Jacobi polynomials with @ =
p = A — 5 and another normalization:

dﬂ)m _ (El)ln Pjgl—%.i—%}(l_)

(A +72)n

(-;.:) F (—f;if::r;l: ];r)1 A £0
/ (1= 21 ()P (v) dx
~ al(n+22)2172% 5 l}_% N

T} (n+2)n!

(1=x2)y"(x) = (24 + Dxy' (x) +n(n+24)y(x) =0, y(x) =G,
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Confined quantum oscillator vs.
infinite potential well




Confined quantum oscillator potential with
the position-dependent effective mass




Definition of the position-
dependent effective mass

e position-dependent effective mass M (x) should be equal to constant mass m at origin of posi-
tion x = 0;

e position-dependent effective mass M (x) should recover correct constant mass m under the
limit a — oo
e thanks to definition of the position-dependent effective mass M (x) confinement effect at val-

ues of position x = F=a should be achieved;

e stationary Schrodinger equation for the position-dependent mass Hamiltonians should be ex-
plicitly solvable and its solutions should recover so-called Hermite oscillator solutions under
the limit @ — oo.



Electron Tunneling in
Superconductors

VOLUME 5, NUMBER 4
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Tunneling from an Independent-Particle Point of View

Warrer A. Harmison
General Hlectric Research Laboratory, Schenectady, New York

(Received February 20, 1961)

A method is developed for calculating wave functions through
regions of varying band structure. This method is applied to
tunneling problems using the transition-probability approach of
Bardeen. It is found that the experiments of Giaever involving
tunneling into superconductors cannot be understood strictly in
terms of an independent quasi-particle model of the supercon-
ductor. The observed proportionality of the tunneling probability
to the density of states depends upon the matrix elements being
constant which, in turn, depends upon a many-particle feature of

I INTRODUCTION

ARDEEN! has discussed tunneling from a many-
particle point of view. He did not, however, discuss

-systems in which the band structure varies with posi-

tion. In the following treatment we restrict ourselves to
an independent-particle approximation, but extend the
work to allow for variations in the local band structure.

We proceed by first developing a method for con-
struction of one-particle wave functions, taking particu-
lar care that these conserve current locally. Matrix

the problem. This feature does not carry over to fluctuations in the
density of states arising from band structure, and contributions to
the current are not expected to be proportional to the density of
states in that case. Instead, a projection in wave-number space of
the appropriate constant-energy surface enters. Tunneling systems
are discussed which involve semiconductors, semimetals, and
transition metals as well as simple metals. Finally, alterations in
the properties arising from alterations in the nature of the bound-
ary regions are discussed.

Sec. VL. This cannot be an exact eigenfunction for
general band structure since we are required to match
the wave functions on the entire plane x=0, but have
only the coefficients of four waves at our disposal.

The problem of constructing wave functions is now
reduced to the problem of obtaining two matching con-
ditions upon the wave function; these, in conjunction
with normalization and external boundary conditions,
will uniquely determine the eigenstates. It will be a
great mathematical simplification to assume reflection

e Y T L . — |

P p—



BenDaniel-Duke kinetic energy
operator

PHYSICAL REVIEW VOLUME

152,

NUMBER 2 9 DECEMBER 1966

Space-Charge Effects on Electron Tunneling

D. J. BexDanier anp C. B. Duge
General Electric Research and Development Cenler, Schenectady, New Vork
(Received 2 June 1966)

The one-electron (Bethe-Sommerfeld) model of electron tunneling is formulated to describe tunneling
when the curvature (electron mass) and centroid of the one-electron constant-energy surfaces vary across
the junction, The conductance for an abrupt GaAs p-n tunnel diode is calculated and shown to exhibit
minima near zero bias for highly asymmetrical doping ratios. The conductance of metal-oxide-semimetal
(M-0-SM) tunnel junctions is evaluated both with and without the inclusion of space-charge effects and of
surface states. All calculations are performed using solvable models for which the WKB] approximation is
not imposed. Neither the removal of the WKB] approximation nor the space-charge effects give rise to
maxima in the conductance of the M-0-SM junctions near a band edge.

I. INTRODUCTION

LTHOUGH electron tunneling in metal-insulator-

metal (M-I-M) junctions has been extensively
studied,! junctions in which one or more of the com-
ponents is a semimetal’? or degenerate semiconductor
have been systematically examined primarily within the
context of p-» junctions.? In this paper we consider the
modifications of the tunneling current in semimetal
and p-n junctions caused by the dependence of the
shape of the space-charge-induced barrier on the
applied bias. We construct sufficiently simple models

has developed an effective-mass theory of tunneling in
p-n junctions. However, he limited his attention to
symmetric diodes and used the WKB] approximation.

The theoretical discussion of metal-oxide-semimetal
(M-O-SM) junctions given herein is, to the authors’
knowledge, the first that has been presented. A treat-
ment of metal-semiconductor contacts has been given
by one of us elsewhere.” Although our models of the
junctions are not as refined as those customarily used
in metal-oxide-metal junctions,! they exhibit the ad-
vantage that the entire calculation of the tunneling
probabilitv can be performed in closed form. As the



BenDaniel-Duke kinetic energy
operator — explicitly




BenDaniel-Duke kinetic energy
operator — solution

ld 1 d Il [d> M d
2 dx M(x) dx 2M | dx? M dx




BenDaniel-Duke kinetic energy
operator — solution

= ()

d*y M'dy (2ME M@’
A2 M dx \ P2 h2 v



BenDaniel-Duke kinetic energy
operator — PDEM M(x)




Schrodinger equation with the
BenDaniel-Duke kinetic energy
operator — solution




Nikiforov-Uvarov method

m (&) is a first degree polynomial



Nikiforov-Uvarov method —
polynomial solution




Nikiforov-Uvarov method —
polynomial solution-2

(&)Y +1(&)y +Ay=0.

(&) + [2(8) —0'(§)] 7 (8) +6(8) —no(§) =0
p=A—m(5)



Nikiforov-Uvarov method —
polynomial solution-3

inourcase o/ — 7 =0

D = —4(cr— ) (1 —co) =0.




Nikiforov-Uvarov method —
polynomial solution-4

(122 _
6102(126: H = Co,
eAgac, U=

2

Q&)= (1—52)_? Aga for case U = ¢y
);,e/loa

for case U = ¢;



Nikiforov-Uvarov method —
polynomial solution-5

From considerations of the finiteness of the wavefunction at points & = 1 (or x = £a), one observes
the condition e = —1 should be satisfied, and the case u = ¢( should be chosen for ¢ (&), i.e.

T(E) = —RaE, (&)= (1-E)?

l{%ﬂ'z




Nikiforov-Uvarov method —
polynomial solution-6

A=co—Aja*, t(&)=-2Aga*+1)¢

6 (8)Y" +71(8)y +Ay=0.

L S %
equation for the Gegenbauer polynomials y = C,(; )(,r)

(1=x2) 7" —Q2v+1)xy +n(n+2v)5=0

we obtain that v = Asa* +1/2



Wavefunction
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Energy spectrum
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Li-Kuhn kinetic energy operator

PHYSICAL REVIEW B VOLUME 47, NUMBER 19 15 MAY 1993-1

Band-offset ratio dependence on the effective-mass Hamiltonian based on a modified profile
of the GaAs-Al,Ga,_, As quantum well

Tsung L. Li and Kelin J. Kuhn
Department of Electrical Engineering, FT-10, University of Washington, Seattle, Washington 98195
(Received 22 October 1991; revised manuscript received 3 December 1992)

This paper suggests a simple permutation scheme to construct the Hermitian Hamiltonian utilized in
the effective-mass equation, introduces a smoothed profile to more accurately model heterojunctions,
and illustrates the dependence of the band-offset ratio of a GaAs-Al,Ga,_,As quantum well on the par-
ticular Hermitian Hamiltonian used in the calculation. The permutation scheme produces the Ben-
Daniel and Duke Hamiltonian, the Bastard Hamiltonian, the Zhu and Kroemer Hamiltonian, and a
Hamiltonian termed the redistributed Hamiltonian in this paper. The heterojunction is modeled by an
error function rather than a step function to more accurately model the material transition region at the
interface between the two materials. The 11 heavy-hole (HH) transition energy obtained by BenDaniel
and Duke Hamiltonian with a particular band-offset ratio is reproduced by utilizing non-BenDaniel and
Duke Hamiltonians with appropriate band-offset ratios. This process is repeated for BenDaniel and
Duke Hamiltonian band-offset ratios varying from 0.5 to 0.8, and then proceeds to 11 light-hole (LH}, 22
HH, and 22 LH transitions. It is found that the Hamiltonian dependence of the band-offset ratio is
significant.

I. INTRODUCTION

The conduction-band-offset ratio, which is the ratio of
the conduction-band offset to the total band gap of the
heterojunction, has been investigated in GaAs-
Al Ga;_,As quantum wells because of its fundamental
importance and application. The ratio has been mea-
sured by spectroscopic!~® and electrical’~* methods, and
the reported value ranges from 0.88 to 0.57. From
Duggan’s'® and Kroemer’s'! review articles about the ex-

well, the position-dependent potential is frequently
modeled by a discontinuous profile, namely, a step func-
tion.»>*® However, in this paper, the step change of the
profile is replaced by an error function because, in the
real world, neither the potential nor the effective mass
can change abruptly across the heterojunction.

In the work published by Chomette et al. in 1986,%! it
was shown that the band-offset ratio depends on the ana-
lytic model and the interface conditions employed to
compute the transition energy. This observation initiates



Li-Kuhn kinetic energy operator —
explicitly

wla 1 4 1 d 1 d|
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Li-Kuhn kinetic energy operator —
explicitly

Ay Mdy 1M 1(M’)2+<2ME Mzcozxz)w

dx2 Mdx 4M "2\ M




Li-Kuhn kinetic energy operator —
Schrodinger equation
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Wavefunction
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Energy spectrum

n=0,1.2,...







L '
[0
=
o
T — _ T T T — T T T T — T nU
u = wy = =
Lo Lol — —
win.1102ds A3.42u%
— ol
g
|0
=
=
T T L T — T <
vy = v = =
Lo (o} — —

wn.1oads A34ou5]



Gora-Williams kinetic energy
operator

PHYSICAL REVIEW

VOLUME 177,

NUMBER 3 15 TJANUARY 1969

Theory of Electronic States and Transport in Graded Mixed Semiconductors™

THADDEUS GORA AND FErD WILLiAMS
Pirysics Department, University of Delaware, Newark, Delaware 19711
(Received 15 July 1968)

Semiconductors which are slowly graded in composition can be shown to have position-dependent band
gaps and position-dependent effective masses, describablein terms of an effective Hamiltonian in an effective-
mass equation. The effective Hamiltonian previously obtained is, in the present work, rendered Hermitian.
Electronic minority-carrier transport for graded systems is described in terms of an effective field which
includes the electrostatic field plus a term in the gradient of the band edge and another in the gradient of the
effective mass. The local radiative-recombination lifetime and local density of states for inhomogeneous
semiconductors are discussed. The equation for the excess minority-carrier concentration in an inhomo-
geneous semiconductor is deduced and is found to differ from that in an homogeneous system, by the effec-
tive field replacing the electric field, by the position dependences of lifetime and mobility, and by terms in
the mobility gradient. Some phenomena specific to graded mixed semiconductors are considered on the basis

of the theoretical analysis.

I. INTRODUCTION

EVERAL unique phenomena and device applica-
tions have been described for semiconductors which

are slowly graded in composition, based on the assump-
tion that such graded systems exhibit graded band
gaps.I® Of interest here is the phenomenon of anti-
Stokes radiative emission. Van Ruyven and Williams*
have proposed field-enhanced minority carrier transport
and recombination in graded band-gap systems as an
anti-Stokes mechanism. The present paper examines

in average unit cell is entirely in the unit-cell potential
with no change in lattice constant.

Assuming that L(x) varies slowly over the spatial
extent of the Wannier functions of the homogeneous
systems, and that interband coupling of S(r) can be
neglected, we obtained an effective masslike equation®
which is valid for states near each band edge

[1/2mn*+BuL(x) J(— V2) F (1) +an L(x) Fu(r)
=E,F.(r), (1



Gora-Williams kinetic energy
operator — explicitly
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Gora-Williams kinetic energy
operator — solution
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Gora-Williams kinetic energy
operator — PDEM M(x)




Gora-Williams kinetic energy
operator — solution
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Schrodinger equation with the
Gora-Williams kinetic energy
operator — solution
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Nikiforov-Uvarov method

m (&) is a first degree polynomial



Nikiforov-Uvarov method —
polynomial solution

I

y + -y +—=y=_0
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Nikiforov-Uvarov method —
polynomial solution-2

(&)Y +1(&)y +Ay=0.
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p=A—m(5)



Wavefunction
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Energy spectrum

Ll
n —
2

)

7_22

2ma?

M?+n+1)




™

Lad

Lok

(%]




25-

201
5
0
5
0,

wnJaid2ds Abuau3



Zhu-Kroemer kinetic energy
operator

15 MARCH 1983

PHYSICAL REVIEW B VOLUME 27, NUMBER 6

Interface connection rules for effective-mass wave functions at
an abrupt heterojunction between two different semiconductors

Qi-Gao Zhu* and Herbert Kroemer
Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106
(Received 17 June 1982)

The problem of the connection rules for effective-mass wave functions across an abrupt
heterojunction is investigated by expressing the results of a one-dimensional tight-binding
approximation in terms of effective-mass wave functions. The widely used conventional
connection rules of continuous-wave function and first derivative are only an approxima-
tion, invalid in all but the simplest limiting case. The connection-rule problem is reformu-
lated by first extrapolating the effective-mass wave functions on the two sides of the hetero-
junction across the interface, as if the semiconductor were homogeneous. In each of the two
lattice planes adjacent to the interface, the extrapolated wave function must then be propor-
tional to the true wave function, with two proportionality coefficients that depend on certain
matrix elements. By suitably renormalizing the wave function, the connection rules for
type-I heterojunctions become, to the first order, the same as if a 8-function scatterer were
superimposed on the band-edge discontinuity. The effects of the new connection rules on
the ground state of a symmetric square well are discussed as an example.

I. INTRODUCTION
A. The problem

In the theory of semiconductor heterostructure,
especially of the quantum wells that have become
technologically possible in recent years, one fre-
quently encounters the problem of connecting
effective-mass wave functions across an interface

nection rules for WKB wave functions across a clas-
sical turning point, we refer to it as a connection-
rule problem.

The majority of those working in the field of
semiconductor heterostructures and quantum wells,
and especially those using the effective-mass approx-
imation for the interpretation (or prediction) of ex-
perimental properties, have taken for granted that
the conventional connection rules from ordinary
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Zhu-Kroemer kinetic energy
operator — PDEM M(x)
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Schrodinger equation with the
Zhu-Kroemer kinetic energy
operator — solution
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Nikiforov-Uvarov method

m (&) is a first degree polynomial
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Nikiforov-Uvarov method —
polynomial solution-2
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Morrow-Brownstein kinetic energy
operator

PHYSICAL REVIEW B

YVOLUME 30, NUMBER 2

15 JULY 1984

Model effective-mass Hamiltonians for abrupt heterojunctions
and the associated wave-function-matching conditions

Richard A. Morrow and Kenneth R. Brownstein
Department of Physics and Astronomy, Bennett Hall, University of Maine, Orono, Maine 04469
(Received 27 December 1983)

We consider a class of Hermitian effective-mass Hamiltonians whose kinetic energy term is
(mpmPpm7 +-m?pmPpm®)/4 with a+B+y=—1. We apply these Hamiltonians to an abrupt
heterojunction between two crystals and seek the matching conditions across the junction on the
effective-mass wave function (1) and its spatial derivative (). For a4y we find that the wave func-
tion must vanish at the junction thus implying that the junction acts as an impenetrable barrier.
Consequently, the only viable cases are for a =y where we show that m“/ and m P4 must be con-

tinuous across the junction.

I. INTRODUCTION

Effective-mass theory (EMT) has been used to calculate
physical quantities in crystals when the desired accuracy
did not justify the use of a more complete theory.! Al-
though originally” developed to treat impurities in an
otherwise perfect crystal, EMT has been extended to crys-
tals whose chemical composition changes from region to
region—the so-called graded crystals.? —6¢ The new feature
appearing in these latter applications is that the effective

theory. Actually, in slowly graded crystals the distinction
between the different operators in Eq. (1) is not important,
since the derivations of EMT there are valid only when
the chemical composition changes appreciably over a dis-
tance that is large in comparison to a lattice constant; all
operators of the type in Eq. (1) are equivalent in that
limit.®

In treatments of abrupt heterojunctions the situation is
more confused. Instead of trying to derive the correct
form of the kinetic energy operator (if indeed one exists)
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Morrow-Brownstein kinetic energy
operator — PDEM M(x)
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Schrodinger equation with the
Morrow-Brownstein kinetic energy
operator — solution
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Nikiforov-Uvarov method

m (&) is a first degree polynomial



Nikiforov-Uvarov method —
polynomial solution
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Nikiforov-Uvarov method —
polynomial solution-2
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von Roos kinetic energy operator

15 JUNE 1983

PHYSICAL REVIEW B VOLUME 27, NUMBER 12

Position-dependent effective masses in semiconductor theory

Oldwig von Roos
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
(Received 13 December 1982)

The motion of free carriers (electrons and holes) in semiconductors of nonuniform chemi-
cal composition is sometimes described by means of a Hamiltonian possessing a position-
dependent effective mass. In previous work we have shown that position-dependent masses
lead to inconsistencies on account of Bargmann’s theorem, which postulates that a coherent
superposition of states of different masses (wave packets) is forbidden. We have also shown
how to circumvent this selection rule. We derive an extension of Bargmann’s theorem to the
effect that Hamiltonians with position-dependent masses are not Galilean invariant. Furth-
ermore, it is also shown that the customary derivation of position-dependent effective-mass
Hamiltonians is by no means unique. There exist, in general, many nonequivalent Hamil-
tonians within the same approximation, all derivable from the basic many-body Hamiltoni-
an, as long as the concept of a position-dependent mass is maintained. Because of the lack
of uniqueness and the lack of Galilean invariance of variable-effective-mass theories it
seems appropriate to abandon the concept of a position-dependent mass. In previous work
we have shown how to do this successfully.

I. INTRODUCTION

The importance of a theoretical understanding of
transport phenomena in semiconductors of a vari-
able, position-dependent chemical composition for
modern device technology does not need to be em-
phasized. The Wannier-Slater theorem' valid for
homogeneous semiconductors of a uniform chemical

given by E_(0)4U(T). For details, particularly in
more complicated situations (several minima, degen-
eracy of energy eigenvalues, band mixing, etc.), the
reader is referred to Ref. 2. An extension of the
Wannier-Slater theorem to nonuniform semicon-
ductors, material possessing a position-dependent
varying chemical composition, has been attempted
by a number of authors.’~® Since we are primarily
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von Roos kinetic energy operator —
PDEM M(x)
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Schrodinger equation with the von
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Nikiforov-Uvarov method

m (&) is a first degree polynomial
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polynomial solution
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