

Quantum cryptography with many users

Dagmar Bruß

Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, Germany

SPONSORED BY THE

Federal Ministry of Education and Research

Commission

Samarkand, September 2019

• No-cloning and quantum key distribution (QKD)

- No-cloning and quantum key distribution (QKD)
- QKD using entanglement

- No-cloning and quantum key distribution (QKD)
- QKD using entanglement
- QKD and security

- No-cloning and quantum key distribution (QKD)
- QKD using entanglement
- QKD and security
- Generalisation to many users (conference key agreement)

- No-cloning and quantum key distribution (QKD)
- QKD using entanglement
- QKD and security
- Generalisation to many users (conference key agreement)
- Advantage of multipartite entanglement in quantum networks

- No-cloning and quantum key distribution (QKD)
- QKD using entanglement
- QKD and security
- Generalisation to many users (conference key agreement)
- Advantage of multipartite entanglement in quantum networks

- No-cloning and quantum key distribution (QKD)
- QKD using entanglement
- QKD and security
- Generalisation to many users (conference key agreement)
- Advantage of multipartite entanglement in quantum networks

M. Epping, H. Kampermann, C. Macchiavello, and DB, New J. Phys. 19, 093012 (2017)

Cryptography

Cryptography

Vernam cipher \equiv "one-time pad" (1917):

Encoding with secret random key (only known to Alice and Bob, not to Eve). Proven to be secure.

Cryptography

Vernam cipher \equiv "one-time pad" (1917):

Encoding with secret random key (only known to Alice and Bob, not to Eve). Proven to be secure.

Problem:

How to establish secret random key?

 \hookrightarrow quantum cryptography \equiv quantum key distribution (QKD)

Quantum Mechanics and the No-Cloning Theorem

Perfect cloning of an unknown quantum state is impossible. W.K. Wootters and W.H. Zurek, Nature **299**, 802 (1982)

Reason: Quantum mechanics is linear!

Time evolution:

 $|\psi(t)\rangle = \mathcal{U}(t)|\psi(0)\rangle; \quad \mathcal{U}(t) = e^{-\frac{i}{\hbar}\mathcal{H}t}; \quad \mathcal{U}^{\dagger}\mathcal{U} = \mathbf{1}$

Action of copying transformation \mathcal{U} on basis states (orthogonal):

$$egin{array}{rcl} \mathcal{U}|0
angle|i
angle &=& |0
angle|0
angle \ , \ \mathcal{U}|1
angle|i
angle &=& |1
angle|1
angle \ . \end{array}$$

Quantum Mechanics and the No-Cloning Theorem

Perfect cloning of an unknown quantum state is impossible. W.K. Wootters and W.H. Zurek, Nature **299**, 802 (1982)

Reason: Quantum mechanics is linear!

Time evolution:

$$|\psi(t)\rangle = \mathcal{U}(t)|\psi(0)\rangle; \quad \mathcal{U}(t) = e^{-\frac{i}{\hbar}\mathcal{H}t}; \quad \mathcal{U}^{\dagger}\mathcal{U} = \mathbf{1}$$

Action of copying transformation \mathcal{U} on basis states (orthogonal):

$$egin{array}{rcl} \mathcal{U}|0
angle|i
angle &=& |0
angle|0
angle \ , \ \mathcal{U}|1
angle|i
angle &=& |1
angle|1
angle \ . \end{array}$$

Action of \mathcal{U} on unknown state, $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, with $|\alpha|^2 + |\beta|^2 = 1$:

$$\begin{aligned} \mathcal{U}|\psi\rangle|i\rangle &= \mathcal{U}(\alpha|0\rangle + \beta|1\rangle)|i\rangle \\ &= \alpha|0\rangle|0\rangle + \beta|1\rangle|1\rangle \neq |\psi\rangle|\psi\rangle \end{aligned}$$

Approximate cloning: see e.g. DB, D. DiVincenzo, A. Ekert, C. Fuchs,

C. Macchiavello, and J. Smolin, Phys. Rev. A 57, 2368 (1998)

C. Bennett and G. Brassard; Proc. IEEE Conf. on Comp. Syst. Signal Proc., 175 (1984)

Remember: non-orthogonal states cannot be cloned perfectly

C. Bennett and G. Brassard; Proc. IEEE Conf. on Comp. Syst. Signal Proc., 175 (1984)

Remember: non-orthogonal states cannot be cloned perfectly

Basis 1: (e.g. H- and V-polarised photons)

C. Bennett and G. Brassard; Proc. IEEE Conf. on Comp. Syst. Signal Proc., 175 (1984)

Remember: non-orthogonal states cannot be cloned perfectly

Basis 1: (e.g. H- and V-polarised photons)

Basis 2: (e.g. rotated linear polarisation of photons)

|0>

|1>|

C. Bennett and G. Brassard; Proc. IEEE Conf. on Comp. Syst. Signal Proc., 175 (1984)

Remember: non-orthogonal states cannot be cloned perfectly

Basis 1: (e.g. H- and V-polarised photons)

Basis 2: (e.g. rotated linear polarisation of photons)

|0>

|1>|

A and B use both bases to establish secret key (translate quantum states to classical 0's and 1's)

Quantum key distribution (BB84)

C. Bennett and G. Brassard; Proc. IEEE Conf. on Comp. Syst. Signal Proc., 175 (1984) Aim: secret joint random key for Alice and Bob (Vernam cipher)

- A sends random sequence (polar. photons): B measures randomly (two bases):
- A and B exchange class. info about basis, keep matching cases:
- → Alice and Bob have established secret random key!

 $\uparrow \nearrow \checkmark \rightarrow \nwarrow \uparrow \rightarrow \checkmark$ $\uparrow \rightarrow \checkmark \rightarrow \checkmark \rightarrow \checkmark$

 $1 \ r \ 0 \ 0 \ 1 \ r \ 0 \ r$

Quantum key distribution (BB84)

C. Bennett and G. Brassard; Proc. IEEE Conf. on Comp. Syst. Signal Proc., 175 (1984) Aim: secret joint random key for Alice and Bob (Vernam cipher)

- 1) A sends random sequence (polar. photons): B measures randomly (two bases):
- 2) A and B exchange class. info about basis, keep matching cases:
- $\begin{array}{c} \uparrow \nearrow \checkmark \rightarrow \swarrow \uparrow \rightarrow \swarrow \\ \uparrow \rightarrow \checkmark \rightarrow \checkmark \rightarrow \checkmark \rightarrow \checkmark \end{array}$
- $1 \ r \ 0 \ 0 \ 1 \ r \ 0 \ r$
- $\,\hookrightarrow\,$ Alice and Bob have established secret random key!

Security: no-cloning theorem!

Most simple strategy of the spy Eve: "Intercept and resend" \hookrightarrow corruption of 1/4 bits of key; discovery of Eve by comparison of parts of key!

Trade-off for winning information:

Interaction of Eve introduces disturbance:

$$\begin{aligned} \mathcal{U}|0\rangle|E\rangle &= |0'\rangle|E_0\rangle \\ \mathcal{U}|\bar{1}\rangle|E\rangle &= |\bar{1}'\rangle|E_{\bar{1}}\rangle \end{aligned}$$

Unitarity:

$$\langle 0|\bar{1}\rangle \langle E|E\rangle = \langle 0'|\bar{1}'\rangle \langle E_0|E_{\bar{1}}\rangle$$

Trade-off for winning information:

Interaction of Eve introduces disturbance:

$\mathcal{U} 0\rangle E\rangle$	=	$ 0'\rangle E_0\rangle$
$\mathcal{U} \bar{1}\rangle E\rangle$	=	$ \bar{1}'\rangle E_{\bar{1}}\rangle$

Unitarity:

 $\langle 0 | \bar{1} \rangle \langle E | E \rangle = \langle 0' | \bar{1}' \rangle \langle E_0 | E_{\bar{1}} \rangle$

 \hookrightarrow Maximal information of Eve, i.e. $\langle E_0 | E_{\bar{1}} \rangle$ minimal, for $\langle 0' | \bar{1}' \rangle = 1$, i.e. maximal disturbance of Bob's states.

Trade-off for winning information:

Interaction of Eve introduces disturbance:

$\mathcal{U} 0\rangle E\rangle$	=	$ 0'\rangle E_0\rangle$
$\mathcal{U} \bar{1}\rangle E\rangle$	=	$ \bar{1}'\rangle E_{\bar{1}}\rangle$

Unitarity:

$$\langle 0|\bar{1}\rangle \langle E|E\rangle = \langle 0'|\bar{1}'\rangle \langle E_0|E_{\bar{1}}\rangle$$

 \hookrightarrow Maximal information of Eve, i.e. $\langle E_0 | E_{\bar{1}} \rangle$ minimal, for $\langle 0' | \bar{1}' \rangle = 1$, i.e. maximal disturbance of Bob's states. \hookrightarrow Always assume worst case: all noise is due to Eve.

What is entanglement of composite (pure) states?

$$\begin{split} |\psi\rangle = |a\rangle \otimes |b\rangle & \hookrightarrow \text{ separable} \\ |\psi\rangle \neq |a\rangle \otimes |b\rangle & \hookrightarrow \text{ entangled} \end{split}$$

What is entanglement of composite (pure) states?

$$\begin{split} |\psi\rangle = |a\rangle \otimes |b\rangle & \hookrightarrow \text{ separable} \\ |\psi\rangle \neq |a\rangle \otimes |b\rangle & \hookrightarrow \text{ entangled} \end{split}$$

Example (separable): $|\psi\rangle = |00\rangle \equiv |0\rangle|0\rangle \equiv |0\rangle \otimes |0\rangle$

Example (entangled): Bell states

$$\begin{aligned} |\Phi^{\pm}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle) \\ |\Psi^{\pm}\rangle &= \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle) \end{aligned}$$

Note: perfect correlations/anticorrelations for Bell states

A. Ekert, Phys. Rev. Lett. 67, 661 (1991) Aim: secret random key for Alice and Bob

- 1) A sends half of a Bell state to Bob: $|\phi^+\rangle_{AB} = \frac{1}{\sqrt{2}}(|00\rangle_{AB} + |11\rangle_{AB})$ A and B measure, use 2 bases randomly: \Rightarrow or \checkmark
- 2) A and B exchange class. info about basis, keep matching cases: 1 r 0 0 1 r 0 r
- → Alice and Bob have established secret random key!

A. Ekert, Phys. Rev. Lett. 67, 661 (1991) Aim: secret random key for Alice and Bob

- 1) A sends half of a Bell state to Bob: $|\phi^+\rangle_{AB} = \frac{1}{\sqrt{2}}(|00\rangle_{AB} + |11\rangle_{AB})$ A and B measure, use 2 bases randomly: \Rightarrow or \checkmark
- 2) A and B exchange class. info about basis, keep matching cases: 1 r 0 0 1 r 0 r
- \hookrightarrow Alice and Bob have established secret random key!

Security: monogamy of entanglement

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)

Impossible!

Possible

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)

Impossible!

Possible

 $E(B|A) + E(B|C) \le E(B|AC)$

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)

 $E(B|A) + E(B|C) \le E(B|AC)$

QKD in reality: noisy entangled state, $\rho = p |\phi^+\rangle \langle \phi^+| + (1-p)\frac{1}{4}\mathbf{1}$, assume Eve to have purifying state (is partially correlated with A/B) \hookrightarrow security analysis

Quantum Key Distribution (QKD)

- Scenario: Alice und Bob have quantum channel (controlled by Eve) and classical channel (authenticated)
- Secure communication ⇔ Creation of a secret random key pair between Alice and Bob
- No restrictions on Eve

QKD: General description of a QKD protocol

Generic QKD Protocol

QKD: General description of a QKD protocol

Equivalence of prepare+measure QKD with entanglement-based QKD \hookrightarrow In the following: use entanglement-based scheme

Generalisation of QKD to more than two parties

M. Epping, H. Kampermann, C. Macchiavello, and DB, New J. Phys. 19, 093012 (2017)

Aim: establish joint secret random key between N parties, i.e. "conference key"

Establishing a conference key: Two possibilities

M. Epping, H. Kampermann, C. Macchiavello, and DB, New J. Phys. 19, 093012 (2017)

Using bipartite entanglement (2QKD):

Establishing a conference key: Two possibilities

M. Epping, H. Kampermann, C. Macchiavello, and DB, New J. Phys. 19, 093012 (2017)

Using bipartite entanglement (2QKD):

... or using multipartite entanglement (NQKD):

Multipartite entanglement

Multipartite entanglement

Multipartite entanglement of composite (pure) states of N parties:

$$\begin{split} |\psi\rangle = |a\rangle_{1,...,k} \otimes |b\rangle_{k+1,...,N} & \hookrightarrow \text{ separable across bipartite split} \\ |\psi\rangle \neq |a\rangle_{1,...,k} \otimes |b\rangle_{k+1,...,N} & \hookrightarrow \text{ multipartite entangled} \end{split}$$

Multipartite entanglement

Multipartite entanglement of composite (pure) states of N parties:

$$\begin{split} |\psi\rangle = |a\rangle_{1,...,k} \otimes |b\rangle_{k+1,...,N} & \hookrightarrow \text{ separable across bipartite split} \\ |\psi\rangle \neq |a\rangle_{1,...,k} \otimes |b\rangle_{k+1,...,N} & \hookrightarrow \text{ multipartite entangled} \end{split}$$

Example (separable): $|\psi\rangle = |0\rangle|0\rangle...|0\rangle$

Example (entangled): GHZ states of N qubits

$$|\psi_{j}^{\pm}\rangle = \frac{1}{\sqrt{2}}(|0\rangle|j\rangle \pm |1\rangle|\bar{j}\rangle)$$

where j takes values $0,...,2^{N-1}-1$ in binary notation; \bar{j} is negation of j, e.g. if j=010 then $\bar{j}=101$

Multipartite entanglement for QKD

Which types of multipartite entanglement can be used for QKD?

Multipartite entanglement for QKD

Which types of multipartite entanglement can be used for QKD?

Theorem (Perfect resource state for multipartite QKD)

For N qubits, with $N \ge 3$, the state $|\phi_{corr}\rangle = a_{0,...,0}|0,...,0\rangle + a_{1,...,1}|1,...,1\rangle$ with $|a_{0,...,0}|^2 + |a_{1,...,1}|^2 = 1$ leads to perfect classical correlations between any number of parties, if and only if each of them measures in the z-basis.

Multipartite entanglement for QKD

Which types of multipartite entanglement can be used for QKD?

Theorem (Perfect resource state for multipartite QKD)

For N qubits, with $N \ge 3$, the state $|\phi_{corr}\rangle = a_{0,...,0}|0,...,0\rangle + a_{1,...,1}|1,...,1\rangle$ with $|a_{0,...,0}|^2 + |a_{1,...,1}|^2 = 1$ leads to perfect classical correlations between any number of parties, if and only if each of them measures in the z-basis.

$$\begin{array}{l} \textit{Proof: ``{\Leftarrow'' clear;}}\\ \texttt{``{\Rightarrow'': observable } \mathcal{M}_{ij} \text{ of two parties } i \text{ and } j\text{:}}\\ \mathcal{M}_{ij} = (\vec{M_i} \cdot \vec{\sigma}) \otimes (\vec{M_j} \cdot \vec{\sigma}) = \sum_{\alpha, \beta \in \{x, y, z\}} M_i^{\alpha} M_j^{\beta} \sigma_i^{\alpha} \otimes \sigma_j^{\beta},\\ \langle \phi_{corr} | \sigma_i^{\alpha} \otimes \sigma_j^{\beta} | \phi_{corr} \rangle = 0 \quad \text{unless } \alpha = \beta = z,\\ \text{also } \langle \phi_{corr} | \sigma_i^{\alpha} \otimes \sigma_j^{\beta} | \phi_{corr} \rangle = 2[p_i^{\alpha}(+)p_j^{\beta}(+) + p_i^{\alpha}(-)p_j^{\beta}(-)] - 1,\\ \text{thus } p_i^{\alpha}(+)p_j^{\beta}(+) + p_i^{\alpha}(-)p_j^{\beta}(-) \neq 1, \text{ unless } \alpha = \beta = z. \end{array}$$

If one requires perfect correlations and uniformity of key, the *only* possible resource state is $|GHZ\rangle = \frac{1}{\sqrt{2}}(|0,...,0\rangle + |1,...,1\rangle).$

If one requires perfect correlations and uniformity of key, the *only* possible resource state is $|GHZ\rangle = \frac{1}{\sqrt{2}}(|0,...,0\rangle + |1,...,1\rangle).$

Protocol for *N*-party quantum conference key distribution (NQKD):

If one requires perfect correlations and uniformity of key, the *only* possible resource state is $|GHZ\rangle = \frac{1}{\sqrt{2}}(|0,...,0\rangle + |1,...,1\rangle).$

Protocol for *N*-party quantum conference key distribution (NQKD):

1) State preparation: Parties A and
$$B_i$$
, $i = 1, 2, ..., N - 1$
share $|GHZ\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle^{\otimes N} + |1\rangle^{\otimes N} \right)$.

If one requires perfect correlations and uniformity of key, the *only* possible resource state is $|GHZ\rangle = \frac{1}{\sqrt{2}}(|0,...,0\rangle + |1,...,1\rangle).$

Protocol for *N*-party quantum conference key distribution (NQKD):

1) State preparation: Parties A and
$$B_i$$
, $i = 1, 2, ..., N - 1$
share $|GHZ\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle^{\otimes N} + |1\rangle^{\otimes N} \right)$.

 Measurement: First type of measurement: All parties measure their respective qubits in z-basis (→ key generation). Second type: parties measure randomly, with equal probability, in x- or y-basis (much less frequent).

If one requires perfect correlations and uniformity of key, the *only* possible resource state is $|GHZ\rangle = \frac{1}{\sqrt{2}}(|0,...,0\rangle + |1,...,1\rangle).$

Protocol for *N*-party quantum conference key distribution (NQKD):

- 1) State preparation: Parties A and B_i , i = 1, 2, ..., N 1share $|GHZ\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle^{\otimes N} + |1\rangle^{\otimes N} \right)$.
- 3) Parameter estimation: Parties use equal number of randomly chosen rounds of first and second type to estimate the error rates Q_Z, Q_X .

If one requires perfect correlations and uniformity of key, the *only* possible resource state is $|GHZ\rangle = \frac{1}{\sqrt{2}}(|0,...,0\rangle + |1,...,1\rangle).$

Protocol for *N*-party quantum conference key distribution (NQKD):

1) State preparation: Parties A and
$$B_i$$
, $i = 1, 2, ..., N - 1$
share $|GHZ\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle^{\otimes N} + |1\rangle^{\otimes N} \right)$.

- 3) Parameter estimation: Parties use equal number of randomly chosen rounds of first and second type to estimate the error rates Q_Z, Q_X .
- 4) *Classical post-processing:* As in the bipartite protocol, error correction and privacy amplification is performed.

Security analysis:

• Analogous to bipartite case, with modifications in worst-case error correction and depolarisation

R. Renner, N. Gisin, and B. Kraus, Phys. Rev. A 72, 012332 (2005)

Security analysis:

• Analogous to bipartite case, with modifications in worst-case error correction and depolarisation

R. Renner, N. Gisin, and B. Kraus, Phys. Rev. A 72, 012332 (2005)

- Figure of merit: secret fraction r_{∞} ,
 - i.e. ratio of secret bits and number of shared states:

Security analysis:

• Analogous to bipartite case, with modifications in worst-case error correction and depolarisation

R. Renner, N. Gisin, and B. Kraus, Phys. Rev. A 72, 012332 (2005)

• Figure of merit: secret fraction r_{∞} ,

i.e. ratio of secret bits and number of shared states:

$$r_{\infty} = \sup_{U \leftarrow K} \inf_{\sigma_{A\{B_i\}} \in \Gamma} \left[S(U|E) - \max_{i \in \{1, \dots, N-1\}} H(U|K_i) \right],$$

with $U \leftarrow K$: bitwise preprocessing channel on A's raw key bit K, S(U|E): conditional von-Neumann entropy of (class.) key variable and E, $H(U|K_i)$: conditional Shannon entropy of U and B_i 's guess of it,

 Γ : set of all density matrices $\sigma_{A\{B_i\}}$ of A and B_i consistent with parameter estimation

Secret key rate: $R = r_{\infty}R_{rep}$ with repetition rate R_{rep}

Introduce (extended) depolarisation procedure, \hookrightarrow GHZ-diagonal state \hookrightarrow calculate secret fraction r_{∞} :

Introduce (extended) depolarisation procedure, \hookrightarrow GHZ-diagonal state \hookrightarrow calculate secret fraction r_{∞} :

$$r_{\infty} = \left(1 - \frac{Q_Z}{2} - Q_X\right) \log_2 \left(1 - \frac{Q_Z}{2} - Q_X\right) \\ + \left(Q_X - \frac{Q_Z}{2}\right) \log_2 \left(Q_X - \frac{Q_Z}{2}\right) \\ + (1 - Q_Z)(1 - \log_2(1 - Q_Z)) - h(\max_{1 \le i \le N-1} Q_{AB_i})$$

with Q_Z : probability that at least one B_i obtains different result than A in z-measurement, with Q_X : probability that at least one B_i obtains in x-measurement a result that is incompatible with noiseless state, binary entropy: $h(p) = -p \log_2 p - (1-p) \log_2 (1-p)$,

 Q_{AB_i} : probability that z-measurements of A and B_i disagree.

Example for explicit key rates

Noise model: mixture of GHZ-state and white noise (then $Q = Q_Z$)

$$r_{\infty}(Q,N) = 1 + h(Q) - h\left(Q\frac{2^{N}-1}{2^{N}-2}\right) - h\left(Q\frac{2^{N-1}}{2^{N}-2}\right) + \left(\log_{2}(2^{N-1}-1) - \frac{2^{N}-1}{2^{N}-2}\log_{2}(2^{N}-1)\right)Q,$$

Example for explicit key rates

quantum bit error rate Q

Noise model: mixture of GHZ-state and white noise (then $Q = Q_Z$)

$$r_{\infty}(Q,N) = 1 + h(Q) - h\left(Q\frac{2^{N}-1}{2^{N}-2}\right) - h\left(Q\frac{2^{N-1}}{2^{N}-2}\right) + \left(\log_{2}(2^{N-1}-1) - \frac{2^{N}-1}{2^{N}-2}\log_{2}(2^{N}-1)\right)Q,$$

$$\int_{0.8}^{0.6} \frac{1.0}{0.4} \int_{0.6}^{0.6} \frac{1.0}{0.00 - 0.05 - 0.10 - 0.15 - 0.20 - 0.25 - 0.30 - 0.35}$$
Key rates for $N = 2, 3, ..., 8$, from left to right.

Secret key rate as function of gate failure probability

Consider imperfect state preparation (depolarising noise): experimental creation of GHZ-state is more demanding with higher N!

Secret key rate as function of gate failure probability

Consider imperfect state preparation (depolarising noise): experimental creation of GHZ-state is more demanding with higher N!

Advantage of NQKD in quantum networks

Consider quantum networks with routers (can produce and entangle qubits), fixed channel capacity:

Advantage of NQKD in quantum networks

Consider quantum networks with routers (can produce and entangle qubits), fixed channel capacity:

For small gate failure probability: NQKD is better than 2QKD!

Connection to quantum network coding

Distribution of GHZ-state in above network, with quantum operations at node C (router), and fixed channel capacities for all links:

Connection to quantum network coding

Distribution of GHZ-state in above network, with quantum operations at node C (router), and fixed channel capacities for all links:

- A produces Bell state and sends only one qubit C to router: $|---\rangle_{CA} = \frac{1}{\sqrt{2}}(|0+\rangle + |1-\rangle)_{CA}$
- C produces (N-1) qubits and entangles them with C via C_z gates: $|\psi_{\text{total}}\rangle = \frac{1}{\sqrt{2}}(|+\rangle_C |GHZ'\rangle_{AB_i} + |-\rangle_C X_{B_1} |GHZ'\rangle_{AB_i})$ where $|GHZ'\rangle$ is GHZ-state in X-basis.
- Router measures qubit C in X-basis and distributes qubits to B_i .
- Impossible to create (N-1) Bell pairs by sending single qubit from A to router; need (N-1) network uses.
- M. Epping, H. Kampermann, and DB, New J. Phys. 18, 103052 (2016)

Further developments on multipartite QKD

• Device-independent scenario:

J. Ribeiro, G. Murta, and S. Wehner, arXiv:1708.00798v2 [quant-ph]

Further developments on multipartite QKD

• Device-independent scenario:

J. Ribeiro, G. Murta, and S. Wehner, arXiv:1708.00798v2 [quant-ph]

• Finite key effects:

F. Grasselli, H. Kampermann, and DB, New J. Phys. 20, 113014 (2018)

• No-cloning \hookrightarrow security in prepare-and-measure QKD

- No-cloning \hookrightarrow security in prepare-and-measure QKD
- Monogamy of entanglement \hookrightarrow security in entanglement-based QKD

- No-cloning \hookrightarrow security in prepare-and-measure QKD
- Monogamy of entanglement \hookrightarrow security in entanglement-based QKD
- Generalisation to multiparty QKD

- No-cloning \hookrightarrow security in prepare-and-measure QKD
- Monogamy of entanglement \hookrightarrow security in entanglement-based QKD
- Generalisation to multiparty QKD
- Secret key rate as function of number of parties and noise

- No-cloning \hookrightarrow security in prepare-and-measure QKD
- Monogamy of entanglement \hookrightarrow security in entanglement-based QKD
- Generalisation to multiparty QKD
- Secret key rate as function of number of parties and noise
- Comparison for 2QKD and NQKD in quantum networks with routers: multipartite entanglement may lead to advantage

- No-cloning \hookrightarrow security in prepare-and-measure QKD
- Monogamy of entanglement \hookrightarrow security in entanglement-based QKD
- Generalisation to multiparty QKD
- Secret key rate as function of number of parties and noise
- Comparison for 2QKD and NQKD in quantum networks with routers: multipartite entanglement may lead to advantage
- Experimental implementations of NQKD?

- No-cloning \hookrightarrow security in prepare-and-measure QKD
- Monogamy of entanglement \hookrightarrow security in entanglement-based QKD
- Generalisation to multiparty QKD
- Secret key rate as function of number of parties and noise
- Comparison for 2QKD and NQKD in quantum networks with routers: multipartite entanglement may lead to advantage
- Experimental implementations of NQKD?
- Which states allow for non-zero multipartite key rate?

- No-cloning \hookrightarrow security in prepare-and-measure QKD
- Monogamy of entanglement \hookrightarrow security in entanglement-based QKD
- Generalisation to multiparty QKD
- Secret key rate as function of number of parties and noise
- Comparison for 2QKD and NQKD in quantum networks with routers: multipartite entanglement may lead to advantage
- Experimental implementations of NQKD?
- Which states allow for non-zero multipartite key rate?
Summary and open questions

- No-cloning \hookrightarrow security in prepare-and-measure QKD
- Monogamy of entanglement \hookrightarrow security in entanglement-based QKD
- Generalisation to multiparty QKD
- · Secret key rate as function of number of parties and noise
- Comparison for 2QKD and NQKD in quantum networks with routers: multipartite entanglement may lead to advantage
- Experimental implementations of NQKD?
- Which states allow for non-zero multipartite key rate?

M. Epping, H. Kampermann, C. Macchiavello, and DB, New J. Phys. 19, 093012 (2017)

Quantum Information Theory in Düsseldorf

Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, Germany

from left to right: C. Keller, B. Sanvee, L. Tendick, M. Zibull, F. Bischof, J. Bremer, J. Szangolies, M. Battiato, S. Jansen, H. Kampermann, C. Glowacki, DB, T. Holz, T. Mihaescu, M. Epping, D. Miller

