

Quantum entanglement: classification and detection

Dagmar Bruß

Institute for Theoretical Physics III Heinrich-Heine-Universität Düsseldorf, Germany

Samarkand, September 2019

Bundesministerium für Bildung und Forschung

Outline

- I. Introduction
 - The central role of entanglement in quantum information
- II. Separability versus entanglement
 - Bipartite case: pure states
 - Bipartite case: mixed states, entanglement criteria
 - Positive maps and entanglement witnesses
 - Entanglement measures
 - Multipartite entanglement
- III. Detection of entanglement
 - Operational and non-operational methods
 - Entanglement witnesses and their local decomposition
- IV. Hypergraph states
 - Stabilizer formalism
 - Entanglement properties
 - Violation of Bell inequalities

Number of publications on entanglement

arXiv, word "entanglement" in title of quant-ph, cond-mat and hep-th

Number of publications on entanglement

arXiv, word "entanglement" in title of quant-ph, cond-mat and hep-th

Entanglement is at the heart of quantum information

Given composite quantum state ρ_{AB} , acting on $\mathcal{H}_A \otimes \mathcal{H}_B$, is it separable or entangled?

Given composite quantum state ρ_{AB} , acting on $\mathcal{H}_A \otimes \mathcal{H}_B$, is it separable or entangled?

Pure states:

$$\ket{\psi}$$
 is separable $\ \Leftrightarrow \ \ket{\psi} = \ket{a} \otimes \ket{b}$

Otherwise: $|\psi\rangle$ is entangled

Given composite quantum state ρ_{AB} , acting on $\mathcal{H}_A \otimes \mathcal{H}_B$, is it separable or entangled?

Pure states:

$$\ket{\psi}$$
 is separable $\ \Leftrightarrow \ \ket{\psi} = \ket{a} \otimes \ket{b}$

Otherwise: $|\psi\rangle$ is entangled

• example (separable): $|\psi\rangle = |0\rangle \otimes |0\rangle \equiv |0\rangle |0\rangle \equiv |00\rangle$

Given composite quantum state ρ_{AB} , acting on $\mathcal{H}_A \otimes \mathcal{H}_B$, is it separable or entangled?

Pure states:

$$|\psi
angle$$
 is separable $\ \Leftrightarrow \ |\psi
angle = |a
angle\otimes |b
angle$

Otherwise: $|\psi\rangle$ is entangled

- example (separable): $|\psi\rangle = |0\rangle \otimes |0\rangle \equiv |0\rangle |0\rangle \equiv |00\rangle$
- example (separable): $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle) = |0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

Given composite quantum state ρ_{AB} , acting on $\mathcal{H}_A \otimes \mathcal{H}_B$, is it separable or entangled?

Pure states:

$$|\psi
angle$$
 is separable $\ \Leftrightarrow \ |\psi
angle \ = |a
angle\otimes |b
angle$

Otherwise: $|\psi\rangle$ is entangled

- example (separable): $|\psi\rangle = |0\rangle \otimes |0\rangle \equiv |0\rangle |0\rangle \equiv |00\rangle$
- example (separable): $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle) = |0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- example (entangled): Bell states

$$\begin{aligned} |\Phi^{\pm}\rangle &= \frac{1}{\sqrt{2}} (|00\rangle \pm |11\rangle) \\ |\Psi^{\pm}\rangle &= \frac{1}{\sqrt{2}} (|01\rangle \pm |10\rangle) \end{aligned}$$

Solution of the separability problem for pure bipartite states Given $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$, dim $\mathcal{H}_A = d_A$, dim $\mathcal{H}_B = d_B \ge d_A$

Pure states:

Schmidt decomposition:
$$|\psi^r
angle = \sum_i^r a_i |e_i
angle |f_i
angle$$
 ,

Schmidt rank
$$r\leq d_A$$
 , $\langle e_i|\,e_j
angle=\delta_{ij}=\langle f_i|\,f_j
angle,\;\;a_i>0\;,\;\;\sum_i^ra_i^2=1$

 $|\psi\rangle$ separable $\Leftrightarrow r = 1$

nec. + suff. condition

Proof: singular value decomposition

Note: $\not\exists$ Schmidt decomposition for pure multipartite states i.g.

arrho is separable $\ \Leftrightarrow \ arrho = \sum_i p_i |a_i angle \langle a_i| \otimes |b_i angle \langle b_i|$

 $0 \le p_i \le 1, \ \sum_i p_i = 1, \ \langle a_i | \, a_j \rangle \ne \delta_{ij}, \ \langle b_i | \, b_j \rangle \ne \delta_{ij}$ in general

[R. Werner, Phys. Rev. A 40, 4277 (1989)]

Otherwise: ϱ is entangled

$$arrho$$
 is separable $\,\,\, \Leftrightarrow \,\,\, arrho \,=\, \sum_i p_i |a_i
angle \langle a_i| \otimes |b_i
angle \langle b_i|$

 $0 \le p_i \le 1, \ \sum_i p_i = 1, \ \langle a_i | a_j \rangle \ne \delta_{ij}, \ \langle b_i | b_j \rangle \ne \delta_{ij}$ in general [*R. Werner, Phys. Rev. A* **40**, 4277 (1989)]

Otherwise: ρ is entangled

• example (separable):

$$\varrho = \frac{1}{2} (|00\rangle\langle 00| + |11\rangle\langle 11|)$$

 $0 \le p_i \le 1, \ \sum_i p_i = 1, \ \langle a_i | a_j \rangle \ne \delta_{ij}, \ \langle b_i | b_j \rangle \ne \delta_{ij}$ in general [*R. Werner, Phys. Rev. A* **40**, 4277 (1989)]

Otherwise: ρ is entangled

• example (separable):

$$\varrho = \frac{1}{2} (|00\rangle\langle 00| + |11\rangle\langle 11|)$$

• example (entangled): Werner state

$$\varrho_W = p |\Phi^+\rangle \langle \Phi^+| + (1-p) \frac{1}{4} \mathbb{1}$$
 with $1/3$

Simple conjecture: separability/entanglement from spectral properties???

Simple conjecture:

separability/entanglement from spectral properties???

Counter example: [M. Nielsen and J. Kempe; Phys. Rev. A 86, 5184 (2001)]

Simple conjecture: separability/entanglement from spectral properties??? Counter example: [M. Nielsen and J. Kempe; Phys. Rev. A 86, 5184 (2001)]

separable:

eigenvalues:
$$\lambda_{\sigma} = \{\frac{2}{3}, \frac{1}{3}, 0, 0\}$$

Simple conjecture: separability/entanglement from spectral properties??? Counter example: [M. Nielsen and J. Kempe; Phys. Rev. A 86, 5184 (2001)]

separable:

eigenvalues:
$$\lambda_{\sigma} = \{\frac{2}{3}, \frac{1}{3}, 0, 0\}$$

entangled:

$$\begin{split} \rho &= \frac{1}{3} \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \\ \rho_A &= \rho_B &= \frac{1}{3} \left(\begin{array}{c} 2 & 0 \\ 0 & 1 \end{array} \right) \end{split}$$

eigenvalues: $\lambda_{\rho} = \{\frac{2}{3}, \frac{1}{3}, 0, 0\}$

Simple conjecture: separability/entanglement from spectral properties??? Counter example: [M. Nielsen and J. Kempe; Phys. Rev. A 86, 5184 (2001)]

separable:

eigenvalues:
$$\lambda_{\sigma} = \{\frac{2}{3}, \frac{1}{3}, 0, 0\}$$

entangled:

$$\begin{split} \rho &= \frac{1}{3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \text{eigenvalues:} \quad \lambda_{\rho} = \{\frac{2}{3}, \frac{1}{3}, 0, 0\} \\ \rho_{A} &= \rho_{B} = \frac{1}{3} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \end{split}$$

 ρ and σ have same eigenvalues, also ρ_A and $\sigma_A \hookrightarrow$ conjecture is wrong!

Operational separability criteria

Given ϱ , acting on $\mathcal{H}_A \otimes \mathcal{H}_B$, dim $\mathcal{H}_A = d_A$, dim $\mathcal{H}_B = d_B \ge d_A$ Mixed states:

Positive partial transpose (PPT) or Peres-Horodecki criterion: ρ separable $\Rightarrow \rho^{T_A} \ge 0$

Partial transpose:

$$[\varrho^{T_A}]_{m\mu,n\nu} = [\varrho]_{n\mu,m\nu} \qquad \qquad \hookrightarrow \varrho^{T_A}_{sep} = \sum_i p_i \, \varrho^T_{A,i} \otimes \varrho_{B,i}$$

Operational separability criteria

Given ϱ , acting on $\mathcal{H}_A \otimes \mathcal{H}_B$, dim $\mathcal{H}_A = d_A$, dim $\mathcal{H}_B = d_B \ge d_A$ Mixed states:

Positive partial transpose (PPT) or Peres-Horodecki criterion: ρ separable $\Rightarrow \rho^{T_A} \ge 0$

Partial transpose:

$$\begin{split} [\varrho^{T_A}]_{m\mu,n\nu} &= [\varrho]_{n\mu,m\nu} & \hookrightarrow \varrho^{T_A}_{sep} = \sum_i p_i \, \varrho^{T}_{A,i} \otimes \varrho_{B,i} \\ \\ Proof: \\ \varrho \text{ separable } & \varrho^{T_A} \geq 0 & [A. \text{ Peres, Phys. Rev. Lett. 77, 1413 (1996)}] \\ & \leftarrow & \text{for dim } 2 \times 2 \text{ and } 2 \times 3 \\ & [M. + P. + R. \text{ Horodecki, Phys. Lett. A 223, 1 (1996)}] \end{split}$$

Note: for dimensions $2 \times 2, 2 \times 3$: nec. + suff. condition general: nec. condition, \exists PPT ent. states \equiv bound ent. states

Reduction criterion: ρ separable \Rightarrow $\rho_A \otimes \mathbf{1} - \rho \ge 0$ and $\mathbf{1} \otimes \rho_B - \rho \ge 0$

[M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4206 (1999)]

Proof: Application of positive map $\Lambda(\sigma) = 1 - \sigma$ to B or A

Note: nec. + suff. condition for dimensions $2 \times 2, 2 \times 3$ nec. condition otherwise

$$\begin{array}{ll} \mathsf{Majorization\ criterion:\ }\varrho & \mathsf{separable\ } \Rightarrow \\ \lambda_{\varrho_{AB}}^{\downarrow} \prec \lambda_{\varrho_{A}}^{\downarrow} & \mathsf{and} & \lambda_{\varrho_{AB}}^{\downarrow} \prec \lambda_{\varrho_{B}}^{\downarrow} \end{array}$$

where: λ^{\downarrow} is vector of eigenvalues, in decreasing order; $x^{\downarrow} \prec y^{\downarrow}$ means $\sum_{j=1}^{k} x_{j}^{\downarrow} \leq \sum_{j=1}^{k} y_{j}^{\downarrow}$ for k = 1, ..., d - 1[M. Nielsen and J. Kempe; Phys. Rev. Lett. **86**, 5184 (2001)]

Note: nec. condition

$$\begin{array}{ll} \mathsf{Majorization\ criterion:\ }\varrho & \mathsf{separable\ } \Rightarrow \\ \lambda^{\downarrow}_{\varrho_{AB}} \prec \lambda^{\downarrow}_{\varrho_{A}} & \mathsf{and} & \lambda^{\downarrow}_{\varrho_{AB}} \prec \lambda^{\downarrow}_{\varrho_{B}} \end{array}$$

where:
$$\lambda^{\downarrow}$$
 is vector of eigenvalues, in decreasing order;
 $x^{\downarrow} \prec y^{\downarrow}$ means $\sum_{j=1}^{k} x_{j}^{\downarrow} \leq \sum_{j=1}^{k} y_{j}^{\downarrow}$ for $k = 1, ..., d - 1$
[M. Nielsen and J. Kempe; Phys. Rev. Lett. **86**, 5184 (2001)]

Note: nec. condition

Remark:

Cross norm (\equiv matrix realignment) criterion: ϱ separable $\Rightarrow ||L(\varrho)|| \le 1$

$$[L(\varrho)]_{m\mu,n\nu} = [\varrho]_{mn,\mu\nu}$$

[O. Rudolph; J. Phys. A: Math. Gen. **33**, 3951 (2000); K. Chen and L.-A. Wu, QIC **3**, 193 (2003); M. Horodecki, P. Horodecki, and R. Horodecki, Open Syst. Inf. Dyn. **13**, 103 (2006)]

Cross norm (\equiv matrix realignment) criterion: ϱ separable $\Rightarrow ||L(\varrho)|| \le 1$

$$[L(\varrho)]_{m\mu,n\nu} = [\varrho]_{mn,\mu\nu}$$

[O. Rudolph; J. Phys. A: Math. Gen. **33**, 3951 (2000); K. Chen and L.-A. Wu, QIC **3**, 193 (2003); M. Horodecki, P. Horodecki, and R. Horodecki, Open Syst. Inf. Dyn. **13**, 103 (2006)] Proof: L does not increase trace norm of product states:

 $||L(\varrho_A \otimes \varrho_B)|| \le 1$, with $||A|| = Tr(\sqrt{A^{\dagger}A})$

Convexity of norm: ϱ separable \Rightarrow $||L(\varrho)|| \leq 1$

Cross norm (\equiv matrix realignment) criterion: ϱ separable $\Rightarrow ||L(\varrho)|| \le 1$

$$[L(\varrho)]_{m\mu,n\nu} = [\varrho]_{mn,\mu\nu}$$

[O. Rudolph; J. Phys. A: Math. Gen. **33**, 3951 (2000); K. Chen and L.-A. Wu, QIC **3**, 193 (2003); M. Horodecki, P. Horodecki, and R. Horodecki, Open Syst. Inf. Dyn. **13**, 103 (2006)] Proof: L does not increase trace norm of product states:

 $||L(\varrho_A \otimes \varrho_B)|| \le 1$, with $||A|| = Tr(\sqrt{A^{\dagger}A})$

Local uncertainty relations: ϱ separable $\Rightarrow \sum_i \delta^2(M_i) \ge C$

where: M_i local observables, $M_i = A_i \otimes \mathbf{1} + \mathbf{1} \otimes B_i$ Variance of observable M: $\delta^2(M)_{\varrho} = \langle M^2 \rangle_{\varrho} - \langle M \rangle_{\rho}^2$

[H. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003);

O. Gühne, Phys. Rev. Lett. 92, 117903 (2004)]

Local uncertainty relations: ϱ separable $\Rightarrow \sum_i \delta^2(M_i) \ge C$

where: M_i local observables, $M_i = A_i \otimes \mathbf{1} + \mathbf{1} \otimes B_i$ Variance of observable M: $\delta^2(M)_{\varrho} = \langle M^2 \rangle_{\varrho} - \langle M \rangle_{\varrho}^2$

[H. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003);
 O. Gühne, Phys. Rev. Lett. 92, 117903 (2004)]

Proof: Find lower bound C for product states; concavity of variance: given $\rho = \sum_k p_k \rho_k$, $\sum_i \delta^2(M_i)_{\rho} \ge \sum_k p_k \sum_i \delta^2(M_i)_{\rho_k}$

Local uncertainty relations: ρ separable $\Rightarrow \sum_i \delta^2(M_i) \ge C$

where: M_i local observables, $M_i = A_i \otimes \mathbf{1} + \mathbf{1} \otimes B_i$ Variance of observable M: $\delta^2(M)_{\varrho} = \langle M^2 \rangle_{\varrho} - \langle M \rangle_{\varrho}^2$ [H. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003);

O. Gühne, Phys. Rev. Lett. 92, 117903 (2004)]

Proof: Find lower bound C for product states; concavity of variance: given $\varrho = \sum_k p_k \varrho_k$, $\sum_i \delta^2(M_i)_{\varrho} \ge \sum_k p_k \sum_i \delta^2(M_i)_{\varrho_k}$

Note: nec. condition

Remark: Detects some bound entangled states, can detect multipartite entanglement

Non-operational separability criteria

Positive maps: ρ is separable \Leftrightarrow for *any* positive map Λ : $[\mathbb{1}_A \otimes \Lambda_B](\rho_{AB}) \ge 0$

[M. Horodecki, P. Horodecki and R. Horodecki; Phys. Lett. A 223, 1 (1996)]

Definition: A map Λ is positive iff it maps positive operators to positive operators. The map Λ is completely positive, iff $\mathbb{1}_d \otimes \Lambda$ is positive.

Note: nec. + suff. condition

Remark: Only positive, but not completely positive (CP) maps can provide separability criterion

Non-operational separability criteria

Positive maps: ρ is separable \Leftrightarrow for *any* positive map Λ : $[\mathbb{1}_A \otimes \Lambda_B](\rho_{AB}) \ge 0$

[M. Horodecki, P. Horodecki and R. Horodecki; Phys. Lett. A 223, 1 (1996)]

Definition: A map Λ is positive iff it maps positive operators to positive operators. The map Λ is completely positive, iff $\mathbb{1}_d \otimes \Lambda$ is positive.

Note: nec. + suff. condition

Remark: Only positive, but not completely positive (CP) maps can provide separability criterion

Example for positive, but not completely positive map:

• transpose

• reduction map $\Lambda(\varrho) = 1 - \varrho$

Non-operational separability criteria

Positive maps: ρ is separable \Leftrightarrow for any positive map Λ : $[\mathbb{1}_A \otimes \Lambda_B](\rho_{AB}) \ge 0$

[M. Horodecki, P. Horodecki and R. Horodecki; Phys. Lett. A 223, 1 (1996)]

Definition: A map Λ is positive iff it maps positive operators to positive operators. The map Λ is completely positive, iff $\mathbb{1}_d \otimes \Lambda$ is positive.

Note: nec. + suff. condition

Remark: Only positive, but not completely positive (CP) maps can provide separability criterion

Example for positive, but not completely positive map:

transpose

• reduction map $\Lambda(\varrho) = 1 - \varrho$

 $\begin{array}{ll} \textit{Open problem: How to characterize non-CP maps?} \\ \textit{Only in } d_A d_B \leq 6 \text{ we know } \Lambda_{pos} = \Lambda_{CP}^{(1)} + \Lambda_{CP}^{(2)} \circ T \quad \hookrightarrow \text{ proof PPT} \end{array}$

Entanglement witnesses: ρ is entangled $\Leftrightarrow \exists$ Hermitian operator \mathcal{W} with $\operatorname{Tr}(\mathcal{W}\rho) < 0$, $\operatorname{Tr}(\mathcal{W}\rho_{sep}) \geq 0$.

[M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A **223**, 1 (1996); B. Terhal, Phys. Lett. A **271**, 319 (2000); M. Lewenstein et al, Phys. Rev. A **62**, 052310 (2000)] Note: nec. + suff. condition

Entanglement witnesses: ρ is entangled $\Leftrightarrow \exists$ Hermitian operator \mathcal{W} with $\operatorname{Tr}(\mathcal{W}\rho) < 0$, $\operatorname{Tr}(\mathcal{W}\rho_{sep}) \geq 0$.

[M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A **223**, 1 (1996); B. Terhal, Phys. Lett. A **271**, 319 (2000); M. Lewenstein et al, Phys. Rev. A **62**, 052310 (2000)] Note: nec. + suff. condition

Entanglement witnesses: ρ is entangled $\Leftrightarrow \exists$ Hermitian operator \mathcal{W} with $\operatorname{Tr}(\mathcal{W}\rho) < 0$, $\operatorname{Tr}(\mathcal{W}\rho_{sep}) \geq 0$.

[M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A **223**, 1 (1996); B. Terhal, Phys. Lett. A **271**, 319 (2000); M. Lewenstein et al, Phys. Rev. A **62**, 052310 (2000)] Note: nec. + suff. condition

Remarks:

* *S* and set of all states are convex, compact; Hahn-Banach theorem

Entanglement witnesses: ρ is entangled $\Leftrightarrow \exists$ Hermitian operator \mathcal{W} with $\operatorname{Tr}(\mathcal{W}\rho) < 0$, $\operatorname{Tr}(\mathcal{W}\rho_{sep}) \geq 0$.

[M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A **223**, 1 (1996); B. Terhal, Phys. Lett. A **271**, 319 (2000); M. Lewenstein et al, Phys. Rev. A **62**, 052310 (2000)] Note: nec. + suff. condition

- * *S* and set of all states are convex, compact; Hahn-Banach theorem
- * $Tr(W\varrho)$ is scalar product; expectation value for W

Entanglement witnesses: ρ is entangled $\Leftrightarrow \exists$ Hermitian operator \mathcal{W} with $\operatorname{Tr}(\mathcal{W}\rho) < 0$, $\operatorname{Tr}(\mathcal{W}\rho_{sep}) \geq 0$.

[M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A **223**, 1 (1996); B. Terhal, Phys. Lett. A **271**, 319 (2000); M. Lewenstein et al, Phys. Rev. A **62**, 052310 (2000)] Note: nec. + suff. condition

- * S and set of all states are convex, compact; Hahn-Banach theorem
- * $Tr(W\varrho)$ is scalar product; expectation value for W
- * $\mathcal W$ can be optimized

Entanglement witnesses: ρ is entangled $\Leftrightarrow \exists$ Hermitian operator \mathcal{W} with $\operatorname{Tr}(\mathcal{W}\rho) < 0$, $\operatorname{Tr}(\mathcal{W}\rho_{sep}) \geq 0$.

[M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A **223**, 1 (1996); B. Terhal, Phys. Lett. A **271**, 319 (2000); M. Lewenstein et al, Phys. Rev. A **62**, 052310 (2000)] Note: nec. + suff. condition

- * S and set of all states are convex, compact; Hahn-Banach theorem
- * $Tr(W\varrho)$ is scalar product; expectation value for W
- * $\mathcal W$ can be optimized
- * Problem: need ∞ many ${\cal W}$

Given an entangled pure state $|\psi\rangle$:

$$\begin{aligned} \mathcal{W}_{|\psi\rangle} &= x \mathbf{1} - |\psi\rangle \langle \psi| \text{ with} \\ x &= \max_{|\varphi_{sep}\rangle} |\langle \psi| \varphi_{sep} \rangle|^2 < 1 \end{aligned}$$

Given an entangled pure state $|\psi\rangle$:

$$\begin{array}{l} \mathcal{W}_{|\psi\rangle} = x \mathbf{1} - |\psi\rangle \langle \psi| \text{ with} \\ x = \max_{|\varphi_{sep}\rangle} |\langle \psi| \varphi_{sep} \rangle|^2 < 1 \end{array}$$

is an *entanglement witness* that detects $|\psi\rangle\langle\psi|$:

$$Tr(\mathcal{W}|\psi\rangle\langle\psi|) = x - |\langle\psi|\psi\rangle|^2$$
$$= x - 1 < 0$$

Given an entangled pure state $|\psi\rangle$:

$$\mathcal{W}_{|\psi\rangle} = x \mathbf{1} - |\psi\rangle\langle\psi|$$
 with
 $x = \max_{|\varphi_{sep}\rangle} |\langle\psi|\varphi_{sep}\rangle|^2 < 1$

is an *entanglement witness* that detects $|\psi\rangle\langle\psi|$:

$$Tr(\mathcal{W}|\psi\rangle\langle\psi|) = x - |\langle\psi|\psi\rangle|^2$$

= x - 1 < 0

and is positive on separable states:

$$Tr(\mathcal{W}\varrho_{sep}) = x - \langle \psi | \varrho_{sep} | \psi \rangle$$

$$\geq 0$$

Given an entangled pure state $|\psi\rangle$:

$$\mathcal{W}_{|\psi\rangle} = x \mathbf{1} - |\psi\rangle\langle\psi|$$
 with
 $x = \max_{|\varphi_{sep}\rangle} |\langle\psi|\varphi_{sep}\rangle|^2 < 1$

is an *entanglement witness* that detects $|\psi\rangle\langle\psi|$:

$$Tr(\mathcal{W}|\psi\rangle\langle\psi|) = x - |\langle\psi|\psi\rangle|^2$$

= x - 1 < 0

and is positive on separable states:

$$Tr(\mathcal{W}\varrho_{sep}) = x - \langle \psi | \varrho_{sep} | \psi \rangle$$

$$\geq 0$$

Note: \mathcal{W} also detects $|\psi\rangle\langle\psi|$ plus some noise

Entanglement measures

Requirements for entanglement measure E:

- 1) ϱ separable $\Rightarrow E(\varrho) = 0$
- 2) Normalization:

$$E(P^d_+) = \log d$$

3) No increase under LOCC:

$$E(\Lambda_{LOCC}(\varrho)) \le E(\varrho)$$

4) Continuity:

$$E(\varrho) - E(\sigma) \to 0 \quad \text{ for } \quad ||\varrho - \sigma|| \to 0$$

5) Additivity:

$$E(\varrho^{\otimes n}) = n \, E(\varrho)$$

6) Subadditivity:

$$E(\varrho \otimes \sigma) \le E(\varrho) + E(\sigma)$$

7) Convexity:

$$E(\lambda \varrho + (1-\lambda)\sigma) \le \lambda E(\varrho) + (1-\lambda)E(\sigma)$$

Entanglement cost:

$$E_C(\varrho) = \inf_{\{\Lambda_{LOCC}\}} \lim_{n_\varrho \to \infty} \frac{n_{|\Phi^+\rangle}^{in}}{n_\varrho^{out}}$$

Entanglement cost:

$$E_C(\varrho) = \inf_{\{\Lambda_{LOCC}\}} \lim_{n_\varrho \to \infty} \frac{n_{|\Phi^+\rangle}^{in}}{n_\varrho^{out}}$$

Entanglement of formation:

$$E_F(\varrho) = \inf_{dec\{p_i, |\psi_i\rangle\}} \sum_i p_i S(|\psi_i\rangle\langle\psi_i|)_{red}$$

Entanglement cost:

$$E_C(\varrho) = \inf_{\{\Lambda_{LOCC}\}} \lim_{n_\varrho \to \infty} \frac{n_{|\Phi^+\rangle}^{in}}{n_\varrho^{out}}$$

Entanglement of formation:

$$E_F(\varrho) = \inf_{dec\{p_i, |\psi_i\rangle\}} \sum_i p_i S(|\psi_i\rangle\langle\psi_i|)_{red}$$

Relative entropy of entanglement:

$$E_R(\varrho) = \inf_{\sigma \in S} \operatorname{tr}[\varrho(\log \varrho - \log \sigma)]$$

Entanglement cost:

$$E_C(\varrho) = \inf_{\{\Lambda_{LOCC}\}} \lim_{n_\varrho \to \infty} \frac{n_{|\Phi^+\rangle}^{in}}{n_\varrho^{out}}$$

Entanglement of formation:

$$E_F(\varrho) = \inf_{dec\{p_i, |\psi_i\rangle\}} \sum_i p_i S(|\psi_i\rangle\langle\psi_i|)_{red}$$

Relative entropy of entanglement:

$$E_R(\varrho) = \inf_{\sigma \in S} \operatorname{tr}[\varrho(\log \varrho - \log \sigma)]$$

Distillable entanglement:

$$E_D(\varrho) = \sup_{\{\Lambda_{LOCC}\}} \lim_{n_\varrho \to \infty} \frac{n_{|\Phi^+\rangle}^{out}}{n_\varrho^{in}}$$

Relations and properties of entanglement measures

```
E_D(\varrho) \le E(\varrho) \le E_C(\varrho)
```

Relations and properties of entanglement measures

$$E_D(\varrho) \le E(\varrho) \le E_C(\varrho)$$

Properties of entanglement measures:

	E_C	E_F	E_R	E_D
continuity	?	\checkmark		?
additivity	\checkmark	no^c	no^a	\checkmark
convexity	\checkmark	\checkmark	\checkmark	no $(?)^b$

^aK. Vollbrecht and R. Werner; quant-ph/0010095

^bP. Shor, J. Smolin and B. Terhal; Phys. Rev. Lett. 86, 2681 (2001)

^cM. B. Hastings; Nature Physics 5, 255 (2009)

Multipartite entanglement (*pure state*, n subsystems) $|\psi\rangle$ is fully separable (*n*-separable) iff

$$|\psi\rangle = \underbrace{|a\rangle \otimes |b\rangle \otimes \ldots \otimes |z\rangle}_{n}$$

 $|\psi
angle$ is *k-separable* w.r.t. specific partition, iff

$$|\psi\rangle = \underbrace{|\alpha\rangle \otimes |\beta\rangle \otimes \ldots \otimes |\omega\rangle}_{\checkmark}$$

k subsystems with dim $d_{\alpha}, d_{\beta}, ...$

 $|\psi\rangle$ is *bi-separable* w.r.t. specific partition, iff k=2, i.e.

 $|\psi\rangle$ is *multipartite entangled* iff it is not bi-separable w.r.t. any bipartition

Multipartite entanglement (*mixed state*, *n* subsystems) ρ is fully separable (*n*-separable) iff (with $p_i \ge 0$ and $\sum_i p_i = 1$)

$$arrho = \sum_{i} p_{i} \ket{a_{i}} ra{a_{i}} \otimes \ket{b_{i}} ra{b_{i}} \otimes \ldots \otimes \ket{z_{i}} ra{z_{i}}$$

 ϱ is *k*-separable w.r.t. specific partition, iff

$$\varrho = \sum_{i} p_{i} \underbrace{|\alpha_{i}\rangle \langle \alpha_{i}| \otimes |\beta_{i}\rangle \langle \beta_{i}| \otimes \ldots \otimes |\omega_{i}\rangle \langle \omega_{i}|}_{\text{k subsystems}}$$

 ϱ is *bi-separable* w.r.t. specific partition, iff k=2, i.e.

$$\varrho = \sum_{i} p_{i} \left| A_{i} \right\rangle \left\langle A_{i} \right| \otimes \left| B_{i} \right\rangle \left\langle B_{i} \right|$$

 ϱ is *multipartite entangled* iff it is not bi-separable

[M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996); B. Terhal, Phys. Lett. A 271, 319 (2000); M. Lewenstein et al, Phys. Rev. A 62, 052310 (2000)]

[M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996); B. Terhal, Phys. Lett. A 271, 319 (2000); M. Lewenstein et al, Phys. Rev. A 62, 052310 (2000)]

 $\begin{array}{rll} & \mbox{Entanglement witness:} \\ \varrho \mbox{ is entangled } \Leftrightarrow \exists \mbox{ Hermitian operator } \mathcal{W} \mbox{ with } \\ & \mbox{Tr}(\mathcal{W}\varrho) & < & 0 \ , \\ & \mbox{Tr}(\mathcal{W}\varrho_{sep}) & \geq & 0 \ . \end{array}$

[M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A **223**, 1 (1996); B. Terhal, Phys. Lett. A **271**, 319 (2000); M. Lewenstein et al, Phys. Rev. A **62**, 052310 (2000)]

Remarks:

* sets of k-separable states S_k are convex, compact

[M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A **223**, 1 (1996); B. Terhal, Phys. Lett. A **271**, 319 (2000); M. Lewenstein et al, Phys. Rev. A **62**, 052310 (2000)]

- * sets of k-separable states S_k are convex, compact
- multipartite entanglement witness: positive on biseparable states

 $\begin{array}{rll} & \mbox{Entanglement witness:} \\ \varrho \mbox{ is entangled } \Leftrightarrow \exists \mbox{ Hermitian operator } \mathcal{W} \mbox{ with } \\ & \mbox{Tr}(\mathcal{W}\varrho) & < & 0 \ , \\ & \mbox{Tr}(\mathcal{W}\varrho_{sep}) & \geq & 0 \ . \end{array}$

[M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A **223**, 1 (1996); B. Terhal, Phys. Lett. A **271**, 319 (2000); M. Lewenstein et al, Phys. Rev. A **62**, 052310 (2000)]

- * sets of k-separable states S_k are convex, compact
- multipartite entanglement witness: positive on biseparable states
- * how to measure \mathcal{W} ?

1 Operational separability criteria:

Do state tomography and apply criterion *Disadvantage:* have to determine ρ fully; operational criteria hold only for low dimensions

1 Operational separability criteria:

Do state tomography and apply criterion *Disadvantage:* have to determine ρ fully; operational criteria hold only for low dimensions

2 Positive non-CP maps:

Disadvantage: unphysical (but: physical approximation) [P. Horodecki and A. Ekert, Phys. Rev. Lett. **89**, 127902 (2002)]

1 Operational separability criteria:

Do state tomography and apply criterion *Disadvantage:* have to determine ρ fully; operational criteria hold only for low dimensions

2 Positive non-CP maps:

Disadvantage: unphysical (but: physical approximation) [P. Horodecki and A. Ekert, Phys. Rev. Lett. **89**, 127902 (2002)]

3 Bell inequalities:

Violation of Bell inequality proves existence of entanglement *Disadvantage:* "classical" concept, even for dim. 2×2 some entangled states do not violate Bell inequality

1 Operational separability criteria:

Do state tomography and apply criterion *Disadvantage:* have to determine ρ fully; operational criteria hold only for low dimensions

2 Positive non-CP maps:

Disadvantage: unphysical (but: physical approximation) [P. Horodecki and A. Ekert, Phys. Rev. Lett. **89**, 127902 (2002)]

3 Bell inequalities:

Violation of Bell inequality proves existence of entanglement *Disadvantage:* "classical" concept, even for dim. 2×2 some entangled states do not violate Bell inequality

④ Entanglement witnesses:

Measure an expectation value, is genuine "quantum" concept *Disadvantage:* need to know "something" about state, but this usually holds for experiment

Theory: [O. Gühne et al, Phys. Rev. A 66, 062305 (2002)]

Local decomposition of non-positive witness operator *W*, pseudo mixture (at least one coeffcient c_i < 0):

$$\mathcal{W} = \sum_i c_i |a_i
angle \langle a_i| \otimes |b_i
angle \langle b_i| \;, \;\; ext{with} \;\;\; c_i \in {
m I}\!{
m R} \;, \;\;\; \sum_i c_i = 1$$

Experiment, bipartite case: [M. Barbieri et al, Phys. Rev. Lett. 91, 227901 (2003)] Experiment, multipartite case: [M. Bourennane et al, Phys. Rev. Lett. 92, 087902 (2004)]

Theory: [O. Gühne et al, Phys. Rev. A 66, 062305 (2002)]

Local decomposition of non-positive witness operator *W*, pseudo mixture (at least one coeffcient c_i < 0):

$$\mathcal{W} = \sum_i c_i |a_i
angle \langle a_i | \otimes |b_i
angle \langle b_i | \;, \; \; ext{with} \; \; \; c_i \in {
m I}\!\!{
m R} \;, \; \; \; \sum_i c_i = 1$$

• Optimal decomposition of witness? (min. number of meas. settings)

Experiment, bipartite case: [M. Barbieri et al, Phys. Rev. Lett. 91, 227901 (2003)] Experiment, multipartite case: [M. Bourennane et al, Phys. Rev. Lett. 92, 087902 (2004)]

Theory: [O. Gühne et al, Phys. Rev. A 66, 062305 (2002)]

Local decomposition of non-positive witness operator *W*, pseudo mixture (at least one coeffcient c_i < 0):

$$\mathcal{W} = \sum_i c_i |a_i
angle \langle a_i| \otimes |b_i
angle \langle b_i| \;, \;\; ext{with} \;\;\; c_i \in {
m I}\!\!{
m R} \;, \;\;\; \sum_i c_i = 1$$

- Optimal decomposition of witness? (min. number of meas. settings)
- Signature for entanglement:

$$Tr(W\varrho) < 0 \Rightarrow$$
 Entanglement
 $Tr(W\varrho) \ge 0 \Rightarrow ??$

Experiment, bipartite case: [M. Barbieri et al, Phys. Rev. Lett. 91, 227901 (2003)] Experiment, multipartite case: [M. Bourennane et al, Phys. Rev. Lett. 92, 087902 (2004)]

(Selected) literature on entanglement

- "Separability and distillability in composite quantum systems – a primer", M. Lewenstein, D. Bruß, J. I. Cirac, B. Kraus, M. Kuś, J. Samsonowicz, A. Sanpera and R. Tarrach, J. Mod. Opt. 47, 2841 (2000)
- "Characterizing entanglement",
 D. Bruß, J. Math. Phys. 43, 4237 (2002)
- "Quantum entanglement", Ryszard Horodecki, Pawel Horodecki, Michal Horodecki, and Karol Horodecki, Rev. Mod. Phys. 81, 865 (2009)
- "Entanglement detection",
 O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009)
- "Quantum Information: From Foundations to Quantum Technology Applications", Eds. D. Bruß and G. Leuchs, Wiley-VCH (2nd Edition, 2019)

IV. Hypergraph states

M. Rossi, M. Huber, DB, and C. Macchiavello, New J. Phys. 15, 113022 (2013)

IV. Hypergraph states

M. Rossi, M. Huber, DB, and C. Macchiavello, New J. Phys. 15, 113022 (2013)

• Hypergraph states (HGS) are generalisation of graph states

IV. Hypergraph states

M. Rossi, M. Huber, DB, and C. Macchiavello, New J. Phys. 15, 113022 (2013)

- Hypergraph states (HGS) are generalisation of graph states
- Natural occurrence of HGS in quantum algorithms
- Hypergraph states (HGS) are generalisation of graph states
- Natural occurrence of HGS in quantum algorithms
- Equivalence classes of HGS under local unitaries

- Hypergraph states (HGS) are generalisation of graph states
- Natural occurrence of HGS in quantum algorithms
- Equivalence classes of HGS under local unitaries
- Multipartite entanglement properties of HGS

- Hypergraph states (HGS) are generalisation of graph states
- Natural occurrence of HGS in quantum algorithms
- Equivalence classes of HGS under local unitaries
- Multipartite entanglement properties of HGS
- Violation of Bell inequalities

- Hypergraph states (HGS) are generalisation of graph states
- Natural occurrence of HGS in quantum algorithms
- Equivalence classes of HGS under local unitaries
- Multipartite entanglement properties of HGS
- Violation of Bell inequalities
- Hypergraph states for quantum error correction?

Graph states for quantum information processing

M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H.-J. Briegel,

Proc. Int. School of Physics "Enrico Fermi", arXiv:quant-ph/0602096

Graph states: Family of entangled multi-qubit states, defined via graphs

Graph states for quantum information processing

M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H.-J. Briegel,

Proc. Int. School of Physics "Enrico Fermi", arXiv:quant-ph/0602096

Graph states: Family of entangled multi-qubit states, defined via graphs

Example: GHZ-state

Graph states for quantum information processing

M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H.-J. Briegel,

Proc. Int. School of Physics "Enrico Fermi", arXiv:quant-ph/0602096

Graph states: Family of entangled multi-qubit states, defined via graphs

Example: GHZ-state

Applications:

- Measurement-based quantum computing
- Quantum error correction (graph codes)
- Quantum metrology
- Multipartite quantum key distribution, secret sharing

Definition of graph states

Given a graph G = (V, E), i.e. a set of n vertices $V = \{1, ..., n\}$ and a set E of edges $e = \{i, j\}$ with $i, j \in V$.

Corresponding graph state $|G\rangle$:

Definition of graph states

Given a graph G = (V, E), i.e. a set of n vertices $V = \{1, ..., n\}$ and a set E of edges $e = \{i, j\}$ with $i, j \in V$.

Corresponding graph state $|G\rangle$:

- Assign a qubit to each vertex; initial *n*-qubit state given by $|+\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle$ with $|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$
- Apply controlled-Z operation C_e for any edge e, with $C_e=diag(1,1,1,-1)_e=1\!\!1_e-2|11\rangle\langle11|_e$

$$|G\rangle = \prod_{e \in E} C_e |+\rangle^{\otimes n}$$

Definition of graph states

Given a graph G = (V, E), i.e. a set of n vertices $V = \{1, ..., n\}$ and a set E of edges $e = \{i, j\}$ with $i, j \in V$.

Corresponding graph state $|G\rangle$:

- Assign a qubit to each vertex; initial *n*-qubit state given by $|+\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle$ with $|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$
- Apply controlled-Z operation C_e for any edge e, with $C_e=diag(1,1,1,-1)_e=1\!\!1_e-2|11\rangle\langle 11|_e$

Graph states: stabilizer formalism

• For any vertex i define operator g_i

$$g_i = X_i \otimes Z_{N(i)} = X_i \bigotimes_{j \in N(i)} Z_j$$

where $N(i)=\{j|\{i,j\}\in E\}$ is neighbourhood of vertex i, i.e. vertices j which are connected to i by edge

• The graph state |G
angle is defined via

$$g_i|G
angle=+|G
angle$$
 for all $i=1,2,...,n$

- The stabilizer operators $\{g_i\}_{i=1,2,\dots,n}$ generate a commutative group, the stabilizer
- The two definitions of graph states are equivalent
 - R. Raussendorf, H.-J. Briegel, Phys. Rev. Lett 86, 5188 (2001)

k-uniform hypergraph states

Given a k-uniform hypergraph $H^k = (V, E)$, i.e. set of vertices $V = \{1, ..., n\}$ and a set E of hyperedges with cardinality k, i.e. $e = \{i_1, ..., i_k\}$ with $i_1, ..., i_k \in V$.

k-uniform hypergraph states

Given a k-uniform hypergraph $H^k = (V, E)$, i.e. set of vertices $V = \{1, ..., n\}$ and a set E of hyperedges with cardinality k, i.e. $e = \{i_1, ..., i_k\}$ with $i_1, ..., i_k \in V$.

Corresponding *k*-uniform hypergraph state $|H^k\rangle$:

- Assign a qubit to each vertex; i.e. initial state is $|+\rangle^{\otimes n}$
- Apply k-qubit controlled Z gate C_e for every k-hyperedge:

$$|H^k\rangle = \prod_{e \in E} C_e |+\rangle^{\otimes n}$$

with
$$C_e = diag(1, 1, ..., 1, -1) = \mathbf{1}_e - 2|1...1\rangle \langle 1...1|_e$$

Hypergraph states

Given a hypergraph H = (V, E), i.e. set of vertices $V = \{1, ..., n\}$ and a set E of hyperedges e with any cardinality $\leq n$.

Hypergraph states

Given a hypergraph H = (V, E), i.e. set of vertices $V = \{1, ..., n\}$ and a set E of hyperedges e with any cardinality $\leq n$.

Corresponding hypergraph state $|H\rangle$:

- Assign a qubit to each vertex; initial *n*-qubit state given by $|+\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle$ with $|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$
- Apply controlled Z gate C_e for every hyperedge:

$$|H\rangle = \prod_{e \in E} C_e |+\rangle^{\otimes n}$$

with
$$C_e = diag(1, 1, ..., 1, -1) = \mathbf{1}_e - 2|1...1\rangle \langle 1...1|_e$$

Hypergraph states: stabilizer formalism

• For any vertex i define operator g_i

$$g_i = X_i \otimes \prod_{e \in E(i)} C_{e \setminus \{i\}}$$

where E(i) is the set of all edges $e \in E$ with $i \in e$. *Note:* these stabilizer operators are "non-local" (i.e. no products of Pauli operators)

- The hypergraph state $|H\rangle$ is defined via

$$g_i|H
angle=+|H
angle$$
 for all $i=1,2,...,n$

- The stabilizer operators $\{g_i\}_{i=1,2,\dots,n}$ generate a commutative group, the generalized stabilizer
- The two definitions of hypergraph states are equivalent

Occurrence of hypergraph states

M. Rossi, DB, and C. Macchiavello, Phys. Rev. A 87, 022331 (2013)

Real Equally Weighted (REW) states for n qubits, appearing in Deutsch-Josza, Bernstein-Vazirani and Grover's algorithm:

$$|\psi_f\rangle \equiv \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} (-1)^{f(x)} |x\rangle$$

with comp. basis states $|x\rangle \in \{|0...000\rangle, |0...001\rangle, \dots, |1...110\rangle, |1...111\rangle\};$ $f(x) : \{0,1\}^n \to \{0,1\}$ Boolean function; $(-1)^{f(x)} = \pm 1$ real phase factor

Occurrence of hypergraph states

M. Rossi, DB, and C. Macchiavello, Phys. Rev. A 87, 022331 (2013)

Real Equally Weighted (REW) states for n qubits, appearing in Deutsch-Josza, Bernstein-Vazirani and Grover's algorithm:

$$|\psi_f\rangle \equiv \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} (-1)^{f(x)} |x\rangle$$

with comp. basis states $|x\rangle \in \{|0...000\rangle, |0...001\rangle, \dots, |1...110\rangle, |1...111\rangle\};$

 $f(x): \{0,1\}^n \to \{0,1\}$ Boolean function; $(-1)^{f(x)} = \pm 1$ real phase factor

Set of REW states is equal to set of hypergraph states,

 \exists simple construction to find corresponding hypergraph from REW state

Occurrence of hypergraph states

M. Rossi, DB, and C. Macchiavello, Phys. Rev. A 87, 022331 (2013)

Real Equally Weighted (REW) states for n qubits, appearing in Deutsch-Josza, Bernstein-Vazirani and Grover's algorithm:

$$|\psi_f\rangle \equiv \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} (-1)^{f(x)} |x\rangle$$

with comp. basis states $|x\rangle \in \{|0...000\rangle, |0...001\rangle, \dots, |1...110\rangle, |1...111\rangle\};$

 $f(x): \{0,1\}^n \to \{0,1\}$ Boolean function; $(-1)^{f(x)} = \pm 1$ real phase factor

Set of REW states is equal to set of hypergraph states, ∃ simple construction to find corresponding hypergraph from REW state

Note:

Hypergraph states are subset of locally maximally entangleable states

C. Kruszynska and B. Kraus, Phys. Rev. A 79, 052304 (2009)

Properties of HGS: multipartite entanglement

M. Ghio, D. Malpetti, M. Rossi, DB, and C. Macchiavello, J. Phys. A: Math. Theor. 51, 045302 (2018)

Aim: detect and quantify genuine multipartite entanglement

Def. of multipartite entanglement via smallest bipartite entanglement:

$$E(|\psi\rangle) := \min_{AB} E^{AB}(|\psi\rangle) = 1 - \max_{|\phi^A\rangle|\phi^B\rangle, AB} |\langle\phi^A|\langle\phi^B|\psi\rangle|^2 =: 1 - \alpha(|\psi\rangle)$$

 \hookrightarrow find largest Schmidt coefficient α of all bipartite decompositions

Properties of HGS: multipartite entanglement

M. Ghio, D. Malpetti, M. Rossi, DB, and C. Macchiavello, J. Phys. A: Math. Theor. 51, 045302 (2018)

Aim: detect and quantify genuine multipartite entanglement

Def. of multipartite entanglement via smallest bipartite entanglement:

$$E(|\psi\rangle) := \min_{AB} E^{AB}(|\psi\rangle) = 1 - \max_{|\phi^A\rangle|\phi^B\rangle, AB} |\langle\phi^A|\langle\phi^B|\psi\rangle|^2 =: 1 - \alpha(|\psi\rangle)$$

 \hookrightarrow find largest Schmidt coefficient α of all bipartite decompositions

Method: Calculate infinity norm for reduced density matrices, where $||M||_{\infty}$ of $n \times n$ Matrix M is defined as:

$$||M||_{\infty} := \max_{i=1,2,\dots,n} \sum_{j=1}^{n} |M_{ij}|$$

As $\lambda_{\max}(M) \leq ||M||_{\infty}$ for $M \geq 0$, use infinity norm to bound Schmidt coefficients of all bipartitions.

Results: Multipartite entanglement for hypergraph states for n qubits:

Notation: k-uniform hypergraph state denoted as $|H_n^k
angle$

• Hypergraph with one hyperedge of maximal cardinality *n*:

$$E(|H_n^n\rangle) = \frac{1}{2^{n-1}}$$

• Hypergraph with one hyperedge of maximal cardinality n:

$$E(|H_n^n\rangle) = \frac{1}{2^{n-1}}$$

• Hypergraph with all hyperedges with cardinality (n-1):

$$\begin{split} E(|H_4^3\rangle) &= \frac{5-\sqrt{5}}{8} \approx 0.35\\ E(|H_n^{n-1}\rangle) &= \frac{n}{2^{n-1}} \text{ for } n \text{ even}, \ n \geq 6\\ E(|H_n^{n-1}\rangle) &= \frac{n-1}{2^{n-1}} \text{ for } n \text{ odd} \end{split}$$

• Hypergraph with one hyperedge of maximal cardinality *n*:

$$E(|H_n^n\rangle) = \frac{1}{2^{n-1}}$$

• Hypergraph with all hyperedges with cardinality (n-1):

$$\begin{split} E(|H_4^3\rangle) &= \frac{5-\sqrt{5}}{8} \approx 0.35\\ E(|H_n^{n-1}\rangle) &= \frac{n}{2^{n-1}} \text{ for } n \text{ even}, \ n \ge 6\\ E(|H_n^{n-1}\rangle) &= \frac{n-1}{2^{n-1}} \text{ for } n \text{ odd} \end{split}$$

• General case, maximum hyperedge cardinality $= k_{\max}$

$$E(|H_n^{k_{\max}}\rangle \geq \frac{1}{2^{k_{\max-1}}}$$

• Hypergraph with one hyperedge of maximal cardinality *n*:

$$E(|H_n^n\rangle) = \frac{1}{2^{n-1}}$$

• Hypergraph with all hyperedges with cardinality (n-1):

$$\begin{split} E(|H_4^3\rangle) &= \frac{5-\sqrt{5}}{8} \approx 0.35\\ E(|H_n^{n-1}\rangle) &= \frac{n}{2^{n-1}} \text{ for } n \text{ even}, \ n \ge 6\\ E(|H_n^{n-1}\rangle) &= \frac{n-1}{2^{n-1}} \text{ for } n \text{ odd} \end{split}$$

• General case, maximum hyperedge cardinality $= k_{\max}$

$$E(|H_n^{k_{\max}}\rangle \geq \frac{1}{2^{k_{\max-1}}}$$

• Hypergraph with one hyperedge of maximal cardinality *n*:

$$E(|H_n^n\rangle) = \frac{1}{2^{n-1}}$$

• Hypergraph with all hyperedges with cardinality (n-1):

$$\begin{split} E(|H_4^3\rangle) &= \frac{5-\sqrt{5}}{8} \approx 0.35\\ E(|H_n^{n-1}\rangle) &= \frac{n}{2^{n-1}} \text{ for } n \text{ even}, \ n \ge 6\\ E(|H_n^{n-1}\rangle) &= \frac{n-1}{2^{n-1}} \text{ for } n \text{ odd} \end{split}$$

• General case, maximum hyperedge cardinality $= k_{\max}$

$$E(|H_n^{k_{\max}}\rangle \geq \frac{1}{2^{k_{\max-1}}}$$

Further results: Ent. for case of all hyperedges of cardinality $\ge (n-1)$. Construct entanglement witnesses for detection of multipartite ent.

Application of HGS: violation of Bell inequalities

Start from Noncontextuality for graph states: remember Mermin inequality for GHZ state (graph state of fully connected graph with 3 vertices)

$$\mathcal{M} = X_1 Z_2 Z_3 + Z_1 X_2 Z_3 + Z_1 Z_2 X_3 - X_1 X_2 X_3$$

If X_i and Z_i are classical quantities with value ± 1 , then

 $\langle \mathcal{M} \rangle \leq 2$

However, interprete \mathcal{M} in terms of stabilizer operators:

$$\mathcal{M} = g_1 + g_2 + g_3 + g_1 g_2 g_3$$

Thus, $\langle \mathcal{M} \rangle = 4$ for GHZ state (eigenstate of g_i with eigenvalue +1). Generalization: find hypergraph states that fulfil

$$\sum_{i=1}^{n} g_i + \prod_{i=1}^{n} g_i = \sum_{i=1}^{n} X_i \prod_{e \in E(i)} C_{e \setminus \{i\}} - \prod_{i=1}^{n} X_i$$

O. Gühne et al, J. Phys. A: Math. Theor. 47, 335303 (2014)

Note: Structure of odd and even binomial coefficients approximates fractal of Sierpiński triangle \hookrightarrow arbitrary number of noncontextuality inequalities

Note: Structure of odd and even binomial coefficients approximates fractal of Sierpiński triangle \hookrightarrow arbitrary number of noncontextuality inequalities Interpretation as Bell inequality: Decompose nonlocal observables into local ones; local assignment of classical values cannot lead to result of quantum mechanics

Note: Structure of odd and even binomial coefficients approximates fractal of Sierpiński triangle \hookrightarrow arbitrary number of noncontextuality inequalities Interpretation as Bell inequality: Decompose nonlocal observables into local ones; local assignment of classical values cannot lead to result of quantum mechanics

See also: Exponentially increasing violation of local realism M. Gachechiladze, C. Budroni, and O. Gühne, Phys. Rev. Lett. 116, 070401 (2016)

Summary

• Entanglement is a resource for quantum information processing.

Summary

- Entanglement is a resource for quantum information processing.
- Entanglement of low-dimensional bipartite quantum systems is well-understood.

Summary

- Entanglement is a resource for quantum information processing.
- Entanglement of low-dimensional bipartite quantum systems is well-understood.
- Entanglement of high-dimensional (bipartite or multipartite) quantum systems is not yet fully understood.
Summary

- Entanglement is a resource for quantum information processing.
- Entanglement of low-dimensional bipartite quantum systems is well-understood.
- Entanglement of high-dimensional (bipartite or multipartite) quantum systems is not yet fully understood.
- Entanglement can be detected "easily" with present-day technology (local entanglement witnesses).

Summary

- Entanglement is a resource for quantum information processing.
- Entanglement of low-dimensional bipartite quantum systems is well-understood.
- Entanglement of high-dimensional (bipartite or multipartite) quantum systems is not yet fully understood.
- Entanglement can be detected "easily" with present-day technology (local entanglement witnesses).
- There are many interesting families of multipartite entangled states, one example: hypergraph states.

Quantum Information Theory in Düsseldorf

Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, Germany

from left to right: J. Bremer, J. M. Henning, D. Miller, H. Kampermann, T. Holz, G. Gianfelici, M. Zibull, DB, T. Backhausen, S. Datta, F. Bischof, T. Wagner, C. Liorni, C. Glowacki, F. Grasselli, C. Hoffmeister, B. Sanvee, L. Tendick, M. Battiato

Deutsche Forschungsgemeinschaft **DFG**

