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Comparison between atomtronics (iontronics) and electronics
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Atoms in an optical lattice

No long range (Coulomb)
interaction though ....
Though dipole dipole
forces can be possible

Optical lattice are free of
dislocations or
impurities...yet we can add
defects, etc

No phonons.... Yet we can
engineer them

Flexibility with the
statistics

Lattice constant Potential is exactly known
and controllable. It can be
switched on and off and

Lattice dimensionality and
modulated.....

crystallography can be
chosen at will,

qguasiperiodicity is easy and

so is shaking potential...

!
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Atomtronics applications

New Journal of Physics Focus on Atomtronics-enabled Quantum Technologies
http://j.mp/AtOmtrOnics

Precision measurement — quantum-enhanced clocks, matter-wave interferometry

Sensing: magnetometry, gravity/gradiometry, rotation, acceleration
Novel scanning probe microscopy

Novel superconductivity and superfluidity
Experimental quantum logic
Novel magnetism and synthetic magnetic fields

Simulating complex quantum systems

Macroscopic transport devices

Topological effects and exotic particles...

Source: Charles Clark
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Atomtronic Circuits of Diodes and Transistors

R. A. Pepino, J. Cooper, D.Z. Anderson, and M. J. Holland

JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado,
Boulder, Colorado 80309, USA
(Received 22 May 2007; revised manuscript received 3 September 2009: published 28 September 2009)

We illustrate that open quantum systems composex
optical lattices can exhibit behavior analogous to semic
demonstrated for bosonic atoms, and the experime
established. The analysis follows from a derivation of
of open quantum systems.

DOLI: 10.1103/PhysRevLett.103.140405
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diagram. The atom analog of a bipolar junction trans
building blocks for more advanced atomtronic devic
mental logic gates.
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where site i has energy e;, interaction energy U, and
annihilation and number operators d; and N, = é:raf, re-
spectively, and J;; is the hopping energy between adjacent
sites i and j. To achieve a steady-state current, atomtronic
circuits require two or more reservoirs held at different
chemical potentials. The free Hamiltonian for the reser-
VOIrs is

ﬁres = ZhvaRLva (3)

vl

where v identifies the mode of reservoir / with energy fiw
and annihilation operator }?,,1. It is assumed that each|
reservoir is so large that its thermodynamic properties are
parametrized by a constant chemical potential w; and
temperature 7;. Each reservoir is connected to a single
system site s; so that the interaction between the system
and reservoir can be written as

Ay =Ygk}, +He, (4)
v,

— =



Bose-Hubbard Model H J% ala;+ 2, (€ - s,
ij i

‘\Seaman et al, PRA, 75, 023615 (2007)
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FIG. 4. (Color online) (a) Schematics of an N-doped lattice. The
donor sites feature a level right below the first empty many-body
band. An atom which occupies this level can easily be excited and
move throughout the lattice. (b) Schematics of a P-doped lattice.
Acceptor sites have a level right above the highest full band. Atoms
can easily be excited into this level and allow for a hole to move
throughout the lattice.
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~ Experimental demonstration of an atomtronic battery
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The top image shows the Bose-Einstein condensate (BEC) in a cigar-shaped trap. The middle image shows the BEC after the atoms are swept to the
left by an optical potential. The bottom image shows a current of atoms flowing from the left half of the trap into the right. (Courtesy: Seth Caliga
et al./New Journal of Physics).
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Hysteresis in a quantized superfluid ‘atomtronic’

circuit

Stephen Eckel', Jeffrey G. Lee!, Fred Jendrzejewski', Noel Murray?, Charles W. Clark!, Christopher J. Lobb', William D. Phillips',

Mark Edwards? & Gretchen K. Campbell

Atomtronics'” is an emerging interdisciplinary field that seeks to
develop new functional methods by creating devices and circuits
where ultracold atoms, often superfluids, have a role analogous to
that of electrons in electronics. Hysteresis is widely used in elec-
tronic circuits—it is routinely observed in superconducting circuits’
and is essential in radio-frequency superconducting quantum inter-

~

superfluid in the frame that rotates with the trap depends on the
relative velocity between the superfluid and the trap>*, and the energy
. . 2
is proportional to (n — €2/£2,)".

Any ring-shaped superfluid necessarily exhibits both hysteresis and
acritical rotation rate, Q% (or, equivalently, a critical velocity), because
all these effects fundamentally arise from the energy barrier that cre-
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Figure 2 | Experimental set-up and procedure. a, Schematic and in situ

images of our trap, which is formed by crossing a ring-shaped dipole trap

for radial confinement and a sheet trap for vertical confinement. b, Schematic

and in situ images of a ring rotated by a repulsive weak link. ¢, Two-step —D1 i H
experimental sequence: the height, U, of the repulsive potential and the angular G ross P Itaevs kl | Eq uation
rotation rate, ©, as a function of time. Step 1 sets the initia 2

using €2, (either 0 or 1.1 Hz) and U, (~1.1u); step 2 probes iﬁ% _ (1 —iA) [_ zh_mvz + V(x,y,z,t) +gN‘w‘2_u '7[/

Q4 and 175 (see text).
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FIG. 1. (a) In situ image of the rin
dimensions shown. (b) Example interfer
(left) when there is no current in the ring
azimuthal interference fringes to guide {
ferograms for various winding numt
indicates the direction of flow. (d) Tr:
fringes to guide the eye and count the nu
extracted winding number is shown bel

FIG. 2. (a) Schematic of the atoms in the trap with a weak link
applied. The coordinate system used throughout is shown; 8 = 0
corresponds to the X axis. (b) A close-up of the weak-link region.
When the weak link is rotated at €2, atoms flow through the weak
link (solid) and around the ring (dashed) as shown by the stream
lines. Larger velocities along the stream lines correspond to
darker lines. (c) The resulting density n(8), velocity »(€), and
phase ¢(0) as a function of angle, with the phase drop y across the
weak link shown. (d) Method of extracting the phase from an
interferogram (left). First, we trace the interference fringes around
the ring (center), and then we fit the discontinuity across the
region where the barrier was (right).
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Some of the most sensitive and precise measurements—for presence of any cor o 2 4 6 8 1012
example, of inertia', gravity” and rotation®—are based on matter-  atom interferomete Transport duration (s)
wave interferometry with free-falling atomic clouds. To achieve transversely excitec
very high sensitivities, the interrogation time has to be verylong, ometer and severel bogal
and consequently the experimental apparatus needs to be very  be guided coherent]
tall (in some cases reaching ten or even one hundred metres) or Here we report t 0.2
the experiments must be performed in microgravity in space®”.  guiding of BECs ove 5 01
Cancelling gravitational acceleration (for example, in atomtronic  internal coherence £ -
circuits®” and matter-wave guides'") is expected to result incompact  hypersonic speeds s 00
devices with extended interrogation times and therefore increased  appreciable additio 0.1
sensitivity. Here we demonstirate smooth and controllable matter-  the static case. The a9
wave puides by transporting Bose— Einstein condensates (BECs) over  than our measurem
macroscopic distances. We use a neutral-atom accelerator ring to | mum difference in 030 . . . . . . .
0g 02 04 06 08B 10 12 14

bring BECs to very high speeds (16 times their sound velocity) and

whole ring (radius |
here are based on

Transport duration (s)

(TAAPs), where the Fig. 3 | Long-distance transport in the accelerator ring. a, Angular

quadrupole field ar position of the condensate and thermal eloud during 14.3 5 of transport in
neous felds oscill: the matter-wave guide (blue dots). The red line depicts the programmed
generaling coils are trajectory of 27 = 10 rad 8. The inset shows the bi-modal distribution
ensemble. This lim ©f lIhu1E!lEl(|.' a [;-.'r 1ls {1[1n|1n5}'|:1ﬂ1:| nil |IJ. 1imt'--::1'-flighl l:xpunsiu; of 24 ms,
ial i pip With the black arrow pointing to the relevant data poinl. a.u., arbitrary

potential in the azi umnits. b, Angular pnsIF:ion af%h.c condensate rclaiifﬂ o the programmed
fections in the wire: trajectory at 27 % 10 rad s~ " The red curve represents the fitbed model of

i " the azimuthal micro-motion of the BEC. The oscillations are partially due
coils I:_abu_l.ll S0mI ., 5 small azimuthal modulation of the trapping potential and partially
resulting in perfec gue 1 a small centre-of-mass oscillation of the dloud relative to the
imperfections of th o ng Lrap.
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reduced Planck constant) gives access to the higher Landau levels
of quantum Hall states, and the hypersonic velocities achieved,
combined with our abilily to control polentials with picokelvin
precision, will facilitate the study of superfluidity and give rise
lo tunnelling and a large range of transport regimes of ultracold
atoms'"", Coherent matter-wave guides are expected to enable
inleraction limes of several seconds in highly compact devices and
lead to portable guided-atom interferometers for applications such
as inertial navigation and gravily mapping.
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Atomtronics in a Line
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Experimental realization of interacting rings and

AQUIDs
M X
z/i +500 um (5.6*R)
BS1 N sk - +200 um (2.2*R)
BS2 1 Gz Z= O
_Hi//_M} -200 pm (-2.2*R)
212

-500 um (-5.6*R)

Effect of the axial translation AR/R = 0.0097z



Coupled rings without impurity
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Single qubit gates

Hamiltonian in the two level basis takes form:

O — 7
0. = 1)1 = |0)(0] @=—5—()o
0z = [1){0] —[0)(1] _ J’(]\;— D,

WKB estimate for the energy gap is given by:
2vUJ’

1 _t —6\/J’/U(1—1/5)3/2

£~

1ET
0

NOT gate  [/,.(8) = exp(iato,) = (.CO.S&

Phase gate U, (5) = €$P(i570z) — (6

1 S11N &
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COS (v



Two-qubit gates

In the lim J"”"< .J" and @, = @, = ® the Hamiltonian of
coupled rings takes form:

1/ L

2
| a= a,b
! 1 _2 2_
H=1H, +Hb+7‘7 05 (0)01
(I) — T J//
H, =eod + ( 5 | = )(0)o105
By choosing e=0 and ®=n-(6 J"/ jr
J o,
U(T) — 6513]?[ 1 7 OxOxT]
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AQUID state readout

It is possible to see signatures of the The chirality of the spiral like
superposition states by studying TOF interferogram determines direction
of the current

Aghamalyan et al New J. Phys. 17, 045023 (2015) Eckel, et al. Physical Review X, 4, 031052, (2014)
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Readout of the atomtronic quantum interference device

Tobias Haug,' Joel Tan,! Mark Theng,! Rainer Dumke,'* Leong-Chuan Kwelk,**7 and Luigi Amico!35.74
' Centre for Quantum Techrolopies, National University of Singapore, 3 Science Drive 2, Singapore 117343, Singapore
*Division af Phvsics and Applied Physics, Nanvang Teclmological University, 21 Nanvang Link, Singapore 637371, Singapore
*MajuLab, Centre National de la Recherche Scientifigue, UNS-NUS-NTU International Joint Research Unit, UMI 3654 Singapore, Singapore
Hnstitute of Advanced Studies, Nanyvang Technolegical University, 60 Namvang View, Singapore 639673, Singapore
* National Institute of Education, Nanyvang Technological University, § Nanyvang Woalk, Singapore 637616, Sinpapore
EDiparrtimento di Fisica ¢ Astronomia, Via Samta Sofia 64, 95127 Catania, Italy
TConsiglio Nazionale delle Ricerche, MATIS-IMM and Tstituto Nazionale di Fisica Nucleare, Sezione di Catania,

S LANEF From the Straits Times.....

e, France
PHYSICAL REVIEW A 97. 013633 (2018)
t=0.61 t=1.2t
P
( (AN .\

=)

\‘.

£
0 "\
. +»
Computer simulations by CQT researchers suggest a way to measure the quality of atomic quantum E /
o SPY 1  |
x/R

(=N
O

»

> r
(= L
interference devices (AQUIDs). The work is published in Physical Review A 97, 013633 (2018) N N -

=4, 50 A 2 TR T T |
x/R x/R x/R

N, L, WAl |
-1 0 1 -3 Q.. I - 0

=370 1 1 1
x/R x/R x/R Xx/R

FIG. 1. Density distribution (a) (fi(r)) and root of density-density covariance (b) a(r.r' = [0,R/2}) of expanding atoms at times
1 =0.037r.067.12r. with t = mRo, /h. Calculated using Bose-Hubbard model. no interaction during expansion. Data in color and
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AQUID system based on the clockwise and anti-clockwise currents

T S S— 0 0.5 1
0 F/2p
Double well for AQUID. Energy spectrum.
Parameters: J/(N-1)/J =16, ® =m. Same parameters with U=2. Due to
avoided crossing near O=m, |,=-1,.
1 1 The current in the k-th dEk(F)
Y)e=—7=(])* Y ) =—=(])- tate is given by: |k M
V0= 0) Me=T5()- 1) eneraystate isgivenbys [eH




Interacting bosons on a 1D lattice
Localized potential on one lattice site

Magnetic flux piercing the ring

tight-binding
U
H=Y" [ ¢y bgﬂ+Hc)+[2 (ny — )|+,
loca
artificial magnetic flux on-site sotential
interactions
An effective Bose-Hubbard model
— hopping renormalized by the magnetic t/U — (t/U)cos(2/M)

flux
Niemeyer, Freericks, Monien (1999)



Effective two-level system

WITHOUT barrier:
rotational invariance

— set of parabolas with
defined angular momentum

WITH barrier:
symmetry breaking
— avoided crossing

. | . . | . S~ gap
0 /2 L 31/2 27 separating
Q first two

@ large fillings: quantum phase model bands
@ normal fillings, n=1: Bose-Hubbard




Check the dependence of [AE1 =E, - EO] & [AE —E -E ] on

— interactions
— barrier strength
— system size

— filling factor

Eo

AE /AE <1/2
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[AE1 /AE?] our quality factor for the qubit
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Interactions & barrier strength

DUSUUBESS s a s i v U/t=10,L/t=05

2| 1 — large interactions
I e SUUII — moderate barrier

E

qubit}

i . I qubit| |

. falvM . urllfavlorable . n X U/t= 2, L /[t=5

0 wd  m2n3m2 T 0w m2nm2 T, weaker interactions
1 e — larger barrier

r
AE,
Wy

_z\/o/é < |
ﬁ 2:“\%% ﬁ 10_15' %ﬂ
10 \éf - =D
-’5: . Ill_l/FlfIO.:!. — ””"f D) . | N - 4 bosons
Y97 10 Tt 9T 0 M =16 sites

Moral: Weak interaction does not isolate the qubit !



DMRG, filling: N/ M = 1/4
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An atomtronic flux qubit: a ring latt Current
interrupted by three weak links  Jasaghsan
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We study a physical system consistir
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Fluxonium: Single Cooper-Pair
Circuit Free of Charge Offsets

. \ Vladimir E. Manucharyan, Jens Koch, Leonid I. Glazman, Michel H. Devoret*

‘ The promise of single Cooper-pair quantum circuits based on tunnel junctions for metrology
f : and quantum information applications is severely limited by the influence of offset charges:
! ' random, slowly drifting microscopic charges inherent in many solid-state systems. By shunting a
, , small junction with the Josephson kinetic inductance of a series array of large-capacitance
! ! tunnel junctions, thereby ensuring that all superconducting islands are connected to the circuit
by at least one large junction, we have realized a new superconducting artificial atom that is totally
insensitive to offset charges. Yet its energy levels manifest the anharmonic structure associated
with single Cooper-pair effects, a useful component for solid-state quantum computation.

Science, 326, 113 (2009)

Arxiv: 1403.4565
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Source: http://qulab.eng.yale.edu/devices.html
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FIG. 4. (Color online) Top-left: lattice potential (1) for

Up =50, v = 0.98 and ¢ = 7/25. Top-right: contour plot of
the (distorted) ring-shaped potential well hosting the atoms.
The qubit is encoded in the two lowest levels |0) and |1) of
the potential well which are well separated from higher energy
levels. Bottom: qubit level dynamics against flux ®. Super-
position of the qubits states can be achieved by changing ®
through the avoided crossing observed at flux ®¢ &~ 2.5257.



Mesoscopic physics

VOLUME 52, NUMBER 2 PHYSICAL REVIEW LETTERS 9 January 1984

Quantum Oscillations and the Aharonov-Bohm Effect for Parallel Resistors
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Aharonov-Bohm for interference effects and
controls transmission in mesoscopic systems

Study how
interaction affects
Aharonov-Bohm

effect

N

Possible Time dynamics?

applications!



Model

RiIH = Hr + Hi edto leads

L—-1 U L-1
_ E2H(D/LATA =
'7’(R = Z (Je + H.C. ) > £
J=0 J=0
Hi. = —K(aga, + apa, , +H.C.)

Source

Drain



t=00.000

U/J=0.2,L=14,N=4
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Time Evolution

Weak-coupling K/J=0.1: Regular, slow source-drain oscillation

* Small ring population = small effect of interaction
a source b ring ¢ drain

norm. density

0 2000 4000 0 2000 4000 0 2000 4000
Strong-coupling K/J=1.0: Less regular, fast oscillation

 Ring highlycll populated, strong interaction effect
e f

—
o

o
¥4
norm. density

U/J=5

U/J=0.2




Parity effect

* Dynamics depend on number of ring sites L

* Best visible in weak coupling (K/J=0.1)

* Parity L/2 a source b drain
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Weak coupling

* What happens in non-empty rmg'-’”p

* Open system: Leads drivenby 3 ~ "[ #1732 Zlf b ’[’+Z bt
particle reservoir > Steady-state ) C)U

current \/
* Fermion/anvon/boson with

infinite repulsion U->oo

a L/2=2 b L/2=3
4 1.07 Boson
~N Y A\ Anyon A
S - E\ Fermion /A
T Ogslf:) / \g A
X = |
o |
- _ : .
0.0~ - | '
0.0 0.5 1.0 0.0 0.5 1.C

* Bosonic current never zero
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Strong coupling
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* Generalize particle commutationrulesn a a’ +¢™a a’ =0
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* Current nearly constant for strongly interacting Bosons: No
Aharanov-Bohm effect
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Add...shaking potential

a) initial DD;SitiD[‘I ) |e;gj-rmgb)p0£(i1;§\ C — =0
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FIG. 1. a) Sketch of the ring-lead system. The dots indicate lattice
sites j with local potential V;(r) = cos(2x/3j — €r) with a period of
three lattice sites (A: j =0, B: j= 1, C: j = 2). Particles tunnel be-
tween different sites along the black lines with strength J. U denotes
the on-site interaction and @ the flux of the ring. b) Topological
pumping of particles on lattice sites by adiabatic modulation of the
periodic potential V;(r) with Chern number C = —1. The cosine po-
tential (black line) is varied adiabatically in time 7 with a frequency
Q = 2x/T, where T is the time of one driving period. Particles are
initialized at A. At time ¢ = 0 no tunneling occurs due to a large po-
tential difference to neighboring sites. Attime ¢+ = 1/6T, potential of
A and B is degenerate, and particles are adiabatically transfered to B.
After one period T the particles have moved by 3 sites.



potential

a b F 3 L=
) initial position  lead-ring ) A B C — t=0
' AN t=T/6
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Lr Lr
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Topological
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closeup
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Time evolution of topological pumping in the ring-lead

system with Ly =6, U/J =1, Q = 0.01J, P, =40J in band -1.
a,b) Density against time and sites for N = 3, a) flux @ =0 and b)
@ =1/2. Site 0: source, site 1-6: ring, site 7: drain c-d) density in

source and drain for particle numbers ¢) N =3, d) N = 4.

Two species pumping.....

o= 3 U
i

Driving this setup for the lower band -1 generates Bell states

a ;3

—®=0
-0 =1/12
fr0=1/6

©=1/4

in the ring W, ) oc|T| 1)+ 1] | E (indicating states as |N|U)).

31 I —0=0

] : ©=1/8
5] ’ seh=1/4

1 1
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ulf

Density pumped through the ring into the drain for central
band with Chern number C = 2. Here, band 0* with initial condition
¢o = m/2 was chosen. (For dynamics of band 0, invert interaction
UV — —U) a) Dependence on interaction U for different values of flux
@ for N = 3 particles and b) for N = 4 particles. Drain density taken
at 1J = 630 with Lg = 8, Q =-0.01J and Py = 60J.



Quantum Science and Technology

Mesoscopic Vortex-Meissner currents in ring ladders
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Analogs from quantum optics......

arXiv:1808.04129
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. Dynamics of the total number of atoms Ny (top),
the net particle flux in = direction _r-r.fr r dyJ: (bottom-left)
and the x component of the center of mass of atomic cloud {x)
(bottom-right) inside the waveguide, for non-rotating, @ =0,
and rotating cases with £} = £1 42 +3. The ring potential
and the wavepnide have same width w and depth U = 20.
Atom-atom interaction strength is u = 2 = 10 1 and ABC
potential strength is V; = 20,
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Focus on Atomtronics-enabled Quantum Technologies

Luigi Amico, Universita di Catania & Centre for Quantum
Technologies, National University of Singapore

Gerhard Birkl, Technische Universitdt Darmstadt
Malcolm Boshier, Los Alamos National Laboratories
Leong-Chuan Kwek, Centre for Quantum Technologies,
National University of Singapore

Scope

Imagine circuitry with atomic carriers instead of electrons and
holes. The most evident features that result from such a design
would be a reduced decoherence rate due to charge neutrality
of the atomic currents, an ability to realize quantum devices
with fermionic or bosonic carriers, and a tunable carrier—carrier
interaction from weak-to-strong, from short-to-long range, from
attractive-to-repulsive in type

The rapid progress in quantum technology is spurring this
dream to reality: Atomtronics is an emerging field in physics
that promises to realize those atomic circuit architectures
exploiting ultra-cold atoms manipulated in versatile micro- Image credit: Timothy Yeo / CQT, National University of Singapore
optical circuits generated by laser fields of different shapes and

intensities or micro-magnetic circuits known as atom chips.

With the added value of a dissipation-less flowing atomic current, Atomtronics would enhance the flexibility and the scope of cold-
atom quantum technology. Within the spirit of the solid-state I-V characteristics, a variety of physical phenomena in many-body
physics could be studied with high accuracy & controllability as is typical of quantum optics technology. With the current know-how in
the field, circuits with a lithographic precision can be realized. In principle, all aspects of mesoscopic physics and devices can also be
explored. It is not just classical electronics which is targeted, but also atom-based spintronics and quantum electronic structures like
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Recent atomtronic devices

Portable Diode (2015) Battery (2017)
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First Bose-Einstein condensate in space

28m

Atom-chip
Apparatur

Dioden-
lasersystem

Elektronik

Batterien

Images: DLR

MAIUS 1 Sounding Rocket Mission

MAIUS: Matter-Wave Interferometry in Microgravity
Launched 23 January 2017 in northern Sweden

Produced Bose-Einstein condensate on board

Performed 100 experiments in matter-wave interferometry

Source: Charles Clark



Unpredictability of blue sky research

Laser (1960s)

Optical fibers
(1970s)

Integrated circuits
(1950s-90s)

Global commuication network

Towards a global quantum
network???

Adapted from Serge Haroche slide



What probably is the Grand Scheme?

Replacing electropis~axith atomtronics?




What probably is the Grand Scheme?

FM1 FM2

Interface with circuit QED

Silica toroid

Decector

| Better sensors and imagitig devices

SQUID pickup coil —
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Bacterium cell
transport phenomenal!




Wolfgang Ketterle

“People in the entertainment
industry didn't discover
lasers for DVDs and BluRays.
That was the work of
scientists. Dentists didn't
discover X-rays for improved
medical imaging. That was
the work of scientists.”

http://www.businessinsider.com/why-quantum-technology-matters-2013-7?IR=T&



”....not only should scientists be
allowed to investigate technologies
that might not have an obvious
application, they should be
encouraged to do so. Improved
clocks are an important part of
driverless cars. Improved sensors
make it easier to find cancer. When
you build a bridge to an
uninhabited island, people move
there, build houses, and start an
economy. We're building these
bridges."

Misha Lukin



It is hard to make predictions,
especially about the future...
(Attributed to Niels Bohr)

... but one thing is sure: without
basic research, novel technologies
cannot be invented...

...and the past teaches us that
wonderful applications always
emerge serendipitously from blue
sky research.

Serge Haroche
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International Journal of

Quantum Information
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The International Journal of Quantum
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